-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlog.txt
267 lines (265 loc) · 34.5 KB
/
log.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
INFO in modeling.py --> Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .
INFO in modeling_bert.py --> Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .
INFO in modeling_xlnet.py --> Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .
INFO in registrable.py --> instantiating registered subclass relu of <class 'allennlp.nn.activations.Activation'>
INFO in registrable.py --> instantiating registered subclass relu of <class 'allennlp.nn.activations.Activation'>
INFO in registrable.py --> instantiating registered subclass relu of <class 'allennlp.nn.activations.Activation'>
INFO in registrable.py --> instantiating registered subclass relu of <class 'allennlp.nn.activations.Activation'>
INFO in tokenization.py --> loading vocabulary file C:\Users\smaxbehr\AppData\Local\ChemDataExtractor\ChemDataExtractor\models/scibert_cased_vocab-1.0.txt
INFO in archival.py --> loading archive file C:\Users\smaxbehr\AppData\Local\ChemDataExtractor\ChemDataExtractor\models/bert_finetuned_crf_model-1.0a
WARNING in params.py --> _jsonnet not loaded, treating C:\Users\smaxbehr\AppData\Local\ChemDataExtractor\ChemDataExtractor\models/bert_finetuned_crf_model-1.0a\config.json as json
WARNING in params.py --> _jsonnet not loaded, treating snippet as json
INFO in registrable.py --> instantiating registered subclass bert_crf_tagger of <class 'allennlp.models.model.Model'>
INFO in params.py --> type = default
INFO in registrable.py --> instantiating registered subclass default of <class 'allennlp.data.vocabulary.Vocabulary'>
INFO in vocabulary.py --> Loading token dictionary from C:\Users\smaxbehr\AppData\Local\ChemDataExtractor\ChemDataExtractor\models/bert_finetuned_crf_model-1.0a\vocabulary.
INFO in from_params.py --> instantiating class <class 'allennlp.models.model.Model'> from params {'calculate_span_f1': True, 'dropout': 0.1, 'include_start_end_transitions': False, 'label_encoding': 'BIO', 'constrain_crf_decoding': True, 'type': 'bert_crf_tagger', 'text_field_embedder': {'embedder_to_indexer_map': {'bert': ['bert', 'bert-offsets']}, 'allow_unmatched_keys': True, 'token_embedders': {'bert': {'type': 'bert-pretrained', 'requires_grad': True, 'top_layer_only': True, 'pretrained_model': 'C:\\Users\\smaxbehr\\AppData\\Local\\ChemDataExtractor\\ChemDataExtractor\\models/scibert_cased_weights-1.0.tar.gz'}}}} and extras {'vocab'}
INFO in params.py --> model.type = bert_crf_tagger
INFO in from_params.py --> instantiating class <class 'chemdataextractor.nlp.finetuned_bert_crf_wrapper._BertCrfTagger'> from params {'calculate_span_f1': True, 'dropout': 0.1, 'include_start_end_transitions': False, 'label_encoding': 'BIO', 'constrain_crf_decoding': True, 'text_field_embedder': {'embedder_to_indexer_map': {'bert': ['bert', 'bert-offsets']}, 'allow_unmatched_keys': True, 'token_embedders': {'bert': {'type': 'bert-pretrained', 'requires_grad': True, 'top_layer_only': True, 'pretrained_model': 'C:\\Users\\smaxbehr\\AppData\\Local\\ChemDataExtractor\\ChemDataExtractor\\models/scibert_cased_weights-1.0.tar.gz'}}}} and extras {'vocab'}
INFO in from_params.py --> instantiating class <class 'allennlp.modules.text_field_embedders.text_field_embedder.TextFieldEmbedder'> from params {'embedder_to_indexer_map': {'bert': ['bert', 'bert-offsets']}, 'allow_unmatched_keys': True, 'token_embedders': {'bert': {'type': 'bert-pretrained', 'requires_grad': True, 'top_layer_only': True, 'pretrained_model': 'C:\\Users\\smaxbehr\\AppData\\Local\\ChemDataExtractor\\ChemDataExtractor\\models/scibert_cased_weights-1.0.tar.gz'}}} and extras {'vocab'}
INFO in params.py --> model.text_field_embedder.type = basic
INFO in params.py --> model.text_field_embedder.allow_unmatched_keys = True
INFO in from_params.py --> instantiating class <class 'allennlp.modules.token_embedders.token_embedder.TokenEmbedder'> from params {'type': 'bert-pretrained', 'requires_grad': True, 'top_layer_only': True, 'pretrained_model': 'C:\\Users\\smaxbehr\\AppData\\Local\\ChemDataExtractor\\ChemDataExtractor\\models/scibert_cased_weights-1.0.tar.gz'} and extras {'vocab'}
INFO in params.py --> model.text_field_embedder.token_embedders.bert.type = bert-pretrained
INFO in from_params.py --> instantiating class <class 'allennlp.modules.token_embedders.bert_token_embedder.PretrainedBertEmbedder'> from params {'requires_grad': True, 'top_layer_only': True, 'pretrained_model': 'C:\\Users\\smaxbehr\\AppData\\Local\\ChemDataExtractor\\ChemDataExtractor\\models/scibert_cased_weights-1.0.tar.gz'} and extras {'vocab'}
INFO in params.py --> model.text_field_embedder.token_embedders.bert.pretrained_model = C:\Users\smaxbehr\AppData\Local\ChemDataExtractor\ChemDataExtractor\models/scibert_cased_weights-1.0.tar.gz
INFO in params.py --> model.text_field_embedder.token_embedders.bert.requires_grad = True
INFO in params.py --> model.text_field_embedder.token_embedders.bert.top_layer_only = True
INFO in params.py --> model.text_field_embedder.token_embedders.bert.scalar_mix_parameters = None
INFO in modeling.py --> loading archive file C:\Users\smaxbehr\AppData\Local\ChemDataExtractor\ChemDataExtractor\models/scibert_cased_weights-1.0.tar.gz
INFO in modeling.py --> extracting archive file C:\Users\smaxbehr\AppData\Local\ChemDataExtractor\ChemDataExtractor\models/scibert_cased_weights-1.0.tar.gz to temp dir C:\Users\smaxbehr\AppData\Local\Temp\tmpv1hx463h
INFO in modeling.py --> Model config {
"attention_probs_dropout_prob": 0.1,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"initializer_range": 0.02,
"intermediate_size": 3072,
"max_position_embeddings": 512,
"num_attention_heads": 12,
"num_hidden_layers": 12,
"type_vocab_size": 2,
"vocab_size": 31116
}
INFO in params.py --> model.label_namespace = labels
INFO in params.py --> model.label_encoding = BIO
INFO in params.py --> model.include_start_end_transitions = False
INFO in params.py --> model.constrain_crf_decoding = True
INFO in params.py --> model.calculate_span_f1 = True
INFO in params.py --> model.dropout = 0.1
INFO in params.py --> model.verbose_metrics = False
INFO in initializers.py --> Initializing parameters
INFO in initializers.py --> Done initializing parameters; the following parameters are using their default initialization from their code
INFO in initializers.py --> crf._constraint_mask
INFO in initializers.py --> crf.transitions
INFO in initializers.py --> tag_projection_layer._module.bias
INFO in initializers.py --> tag_projection_layer._module.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.embeddings.LayerNorm.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.embeddings.LayerNorm.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.embeddings.position_embeddings.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.embeddings.token_type_embeddings.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.embeddings.word_embeddings.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.0.attention.output.LayerNorm.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.0.attention.output.LayerNorm.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.0.attention.output.dense.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.0.attention.output.dense.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.0.attention.self.key.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.0.attention.self.key.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.0.attention.self.query.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.0.attention.self.query.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.0.attention.self.value.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.0.attention.self.value.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.0.intermediate.dense.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.0.intermediate.dense.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.0.output.LayerNorm.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.0.output.LayerNorm.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.0.output.dense.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.0.output.dense.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.1.attention.output.LayerNorm.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.1.attention.output.LayerNorm.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.1.attention.output.dense.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.1.attention.output.dense.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.1.attention.self.key.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.1.attention.self.key.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.1.attention.self.query.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.1.attention.self.query.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.1.attention.self.value.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.1.attention.self.value.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.1.intermediate.dense.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.1.intermediate.dense.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.1.output.LayerNorm.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.1.output.LayerNorm.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.1.output.dense.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.1.output.dense.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.10.attention.output.LayerNorm.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.10.attention.output.LayerNorm.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.10.attention.output.dense.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.10.attention.output.dense.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.10.attention.self.key.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.10.attention.self.key.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.10.attention.self.query.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.10.attention.self.query.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.10.attention.self.value.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.10.attention.self.value.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.10.intermediate.dense.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.10.intermediate.dense.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.10.output.LayerNorm.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.10.output.LayerNorm.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.10.output.dense.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.10.output.dense.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.11.attention.output.LayerNorm.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.11.attention.output.LayerNorm.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.11.attention.output.dense.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.11.attention.output.dense.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.11.attention.self.key.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.11.attention.self.key.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.11.attention.self.query.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.11.attention.self.query.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.11.attention.self.value.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.11.attention.self.value.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.11.intermediate.dense.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.11.intermediate.dense.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.11.output.LayerNorm.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.11.output.LayerNorm.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.11.output.dense.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.11.output.dense.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.2.attention.output.LayerNorm.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.2.attention.output.LayerNorm.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.2.attention.output.dense.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.2.attention.output.dense.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.2.attention.self.key.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.2.attention.self.key.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.2.attention.self.query.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.2.attention.self.query.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.2.attention.self.value.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.2.attention.self.value.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.2.intermediate.dense.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.2.intermediate.dense.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.2.output.LayerNorm.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.2.output.LayerNorm.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.2.output.dense.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.2.output.dense.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.3.attention.output.LayerNorm.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.3.attention.output.LayerNorm.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.3.attention.output.dense.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.3.attention.output.dense.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.3.attention.self.key.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.3.attention.self.key.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.3.attention.self.query.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.3.attention.self.query.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.3.attention.self.value.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.3.attention.self.value.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.3.intermediate.dense.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.3.intermediate.dense.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.3.output.LayerNorm.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.3.output.LayerNorm.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.3.output.dense.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.3.output.dense.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.4.attention.output.LayerNorm.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.4.attention.output.LayerNorm.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.4.attention.output.dense.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.4.attention.output.dense.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.4.attention.self.key.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.4.attention.self.key.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.4.attention.self.query.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.4.attention.self.query.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.4.attention.self.value.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.4.attention.self.value.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.4.intermediate.dense.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.4.intermediate.dense.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.4.output.LayerNorm.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.4.output.LayerNorm.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.4.output.dense.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.4.output.dense.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.5.attention.output.LayerNorm.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.5.attention.output.LayerNorm.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.5.attention.output.dense.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.5.attention.output.dense.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.5.attention.self.key.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.5.attention.self.key.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.5.attention.self.query.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.5.attention.self.query.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.5.attention.self.value.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.5.attention.self.value.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.5.intermediate.dense.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.5.intermediate.dense.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.5.output.LayerNorm.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.5.output.LayerNorm.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.5.output.dense.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.5.output.dense.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.6.attention.output.LayerNorm.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.6.attention.output.LayerNorm.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.6.attention.output.dense.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.6.attention.output.dense.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.6.attention.self.key.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.6.attention.self.key.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.6.attention.self.query.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.6.attention.self.query.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.6.attention.self.value.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.6.attention.self.value.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.6.intermediate.dense.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.6.intermediate.dense.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.6.output.LayerNorm.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.6.output.LayerNorm.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.6.output.dense.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.6.output.dense.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.7.attention.output.LayerNorm.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.7.attention.output.LayerNorm.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.7.attention.output.dense.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.7.attention.output.dense.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.7.attention.self.key.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.7.attention.self.key.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.7.attention.self.query.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.7.attention.self.query.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.7.attention.self.value.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.7.attention.self.value.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.7.intermediate.dense.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.7.intermediate.dense.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.7.output.LayerNorm.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.7.output.LayerNorm.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.7.output.dense.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.7.output.dense.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.8.attention.output.LayerNorm.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.8.attention.output.LayerNorm.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.8.attention.output.dense.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.8.attention.output.dense.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.8.attention.self.key.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.8.attention.self.key.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.8.attention.self.query.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.8.attention.self.query.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.8.attention.self.value.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.8.attention.self.value.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.8.intermediate.dense.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.8.intermediate.dense.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.8.output.LayerNorm.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.8.output.LayerNorm.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.8.output.dense.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.8.output.dense.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.9.attention.output.LayerNorm.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.9.attention.output.LayerNorm.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.9.attention.output.dense.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.9.attention.output.dense.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.9.attention.self.key.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.9.attention.self.key.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.9.attention.self.query.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.9.attention.self.query.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.9.attention.self.value.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.9.attention.self.value.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.9.intermediate.dense.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.9.intermediate.dense.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.9.output.LayerNorm.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.9.output.LayerNorm.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.9.output.dense.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.encoder.layer.9.output.dense.weight
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.pooler.dense.bias
INFO in initializers.py --> text_field_embedder.token_embedder_bert.bert_model.pooler.dense.weight