forked from haotian-wang/viewpoint-estimation
-
Notifications
You must be signed in to change notification settings - Fork 2
/
train.py
235 lines (209 loc) · 10.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# -*- coding: utf-8 -*-
from __future__ import absolute_import, print_function, division
import random
import logging
import traceback
from multiprocessing import cpu_count
from distutils.version import LooseVersion
import torch
from torch import nn
from torch.optim import SGD
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import transforms
import torch.nn.functional as F
import numpy as np
try:
from tensorboardX import SummaryWriter
writer = SummaryWriter()
except:
writer = None
print("Warning: TensorboardX is not installed, so we will not use Tensorboard.")
from network import Model
from dataset import MyDataset
from mmd import mix_rbf_mmd2
from score import AP, meanAP
from preprocessing import Resize
from predict import predict
if LooseVersion(torch.__version__) < LooseVersion('0.4.0'):
Variable.item = lambda self: self.data[0]
def train(model, cadset, realset, optimizer, hot=False,
summarywriter=None, savefilename=None, **kwargs):
"""Train the network using our method
Arguments:
model {nn.Module or nn.DataParallel} -- The network to be trained
cadset {MyDataset} -- Dataset of synthetic images
realset {MyDataset} -- Dataset of real images
optimizer {torch.optim.Optimizer} -- Optimizer
Keyword Arguments:
hot {bool} -- Whether training in hot stage (default: {False})
summarywriter {tensorboardX.SummaryWriter} -- Tensorboard writer (default: {None})
savefilename {str} -- Filename of the saved model (default: {None})
epoch {int} -- Number of epoches to train
batch_size {int} -- Batch size
n_classes {int} -- Number of classes of your dataset
test_steps {int} -- Test intervals while training
GPUs {None/int/(int)} -- CUDA device IDs
Returns:
max_recall {float} Maximum recall during training process
max_ap {[float]} Maximum AP during training process
max_mean_ap {[float]} Maximum mean AP during training process
"""
if not hot:
print('Traning in cold stage!')
else:
print('Training in hot stage!')
if isinstance(model, nn.DataParallel):
print('Warning: Your are using DataParallel. We will only save the state dict of the module, instead of the whole DataParallel object.')
if summarywriter is None:
print('Warning: summarywriter is None. The result will not be displayed on Tensorboard!')
if savefilename is None:
print('Warning: savefilename is None. The trained model will not be saved!')
if 'epoch' not in kwargs:
raise ValueError('Please specify the number of epoches by passing "epoch=YOUR_EPOCHES"!')
if 'batch_size' not in kwargs:
raise ValueError('Please specify the batch size by passing "batch_size=YOUR_BATCH_SIZE"!')
if 'n_classes' not in kwargs:
raise ValueError('Please specify the number of classes in your dataset by passing "n_classes=YOUR_CLASSES"!')
if 'test_steps' not in kwargs:
kwargs['test_steps'] = 50
print('Warning: test_steps is not specified, we will use 50 by default.')
max_recall, max_ap, max_mean_ap = 0, None, 0
for epoch in range(kwargs['epoch']):
cadloader = DataLoader(cadset, batch_size=kwargs['batch_size'], shuffle=True,
num_workers=cpu_count(), drop_last=True)
for batch, (images_cad, labels_cad) in enumerate(cadloader):
# Test accuracies
model.eval()
if (epoch * len(cadloader) + batch) % kwargs['test_steps'] == 0:
_, all_output, all_pred, all_label = predict(model, realset, **kwargs)
recall = np.sum(all_pred == all_label) / float(len(realset))
ap = AP(all_output, all_label)
mean_ap = meanAP(all_output, all_label)
print('Mean Recall: ', recall)
print('AP: ', ap)
print('Mean AP: ', mean_ap)
print('Previous Maximum Mean AP: ', max_mean_ap)
print('Previous Maximum Accuracy: ', max_recall)
if mean_ap >= max_mean_ap:
max_ap, max_mean_ap = ap, mean_ap
if recall >= max_recall:
max_recall = recall
if hot:
print('Update pseudo labels!')
realset.update_pseudo_labels(all_pred)
if savefilename is not None:
if isinstance(model, nn.DataParallel):
torch.save(model.module.state_dict(), savefilename)
else:
torch.save(model.state_dict(), savefilename)
# Read training samples
if hot:
images_real, labels_real = realset.random_choice(labels_cad, use_pseudo=True)
else:
images_real, labels_real = realset.random_choice([
random.randint(0, kwargs['n_classes'] - 1) for _ in range(kwargs['batch_size'])
])
# Convert torch.Tensor to torch.autograd.Variable
model.train()
images_cad = Variable(images_cad)
labels_cad = Variable(labels_cad)
images_real = Variable(images_real)
labels_real = Variable(labels_real)
if kwargs['GPUs']:
images_cad = images_cad.cuda(kwargs['GPUs'][0])
labels_cad = labels_cad.cuda(kwargs['GPUs'][0])
images_real = images_real.cuda(kwargs['GPUs'][0])
labels_real = labels_real.cuda(kwargs['GPUs'][0])
# Feed to our network
mmd_cad, mmd_real, out_cad, out_real = model(images_cad, images_real)
# Calculate the loss
loss_class = F.cross_entropy(out_cad, labels_cad)
loss_mmd = mix_rbf_mmd2(mmd_cad, mmd_real, [1, 2, 4, 8, 16])
loss = loss_class + loss_mmd
# Calculate the accuracy within this batch
accuracy_cad = torch.sum(labels_cad == torch.max(out_cad, 1)[1]).item() / float(kwargs['batch_size'])
accuracy_pseudo = torch.sum(labels_cad == torch.max(out_real, 1)[1]).item() / float(kwargs['batch_size'])
accuracy_real = torch.sum(labels_real == torch.max(out_real, 1)[1]).item() / float(kwargs['batch_size'])
# Print the loss and the accuracy
if hot:
print('epoch:%d, batch:%d, loss:%0.5f, loss_class:%0.5f, loss_mmd:%0.5f, accuracy of CAD:%0.5f, accuracy of pseudo:%0.5f, accuracy of real:%0.5f' % (
epoch, batch, loss.item(), loss_class.item(), loss_mmd.item(), accuracy_cad, accuracy_pseudo, accuracy_real
))
else:
print('epoch:%d, batch:%d, loss:%0.5f, loss_class:%0.5f, loss_mmd:%0.5f, accuracy of CAD:%0.5f, accuracy of real:%0.5f' % (
epoch, batch, loss.item(), loss_class.item(), loss_mmd.item(), accuracy_cad, accuracy_real
))
# Print to Tensorboard
if summarywriter:
summarywriter.add_scalar('accuracy_of_cad', accuracy_cad, epoch * len(cadloader) + batch)
summarywriter.add_scalar('accuracy_of_real', accuracy_real, epoch * len(cadloader) + batch)
summarywriter.add_scalar('loss_of_classification', loss_class.item(), epoch * len(cadloader) + batch)
summarywriter.add_scalar('loss_of_mmd', loss_mmd.item(), epoch * len(cadloader) + batch)
summarywriter.add_scalar('loss', loss.item(), epoch * len(cadloader) + batch)
# Optimize the network
optimizer.zero_grad()
loss.backward()
optimizer.step()
return max_recall, max_ap, max_mean_ap
if __name__ == '__main__':
torch.backends.cudnn.benchmark = True
logging.basicConfig(
level=logging.INFO,
format='%(message)s',
filename='output.log',
filemode='a'
)
parameters = {
'epoch': 60,
'batch_size': 64,
'n_classes': 7,
'test_steps': 50,
# Whether to use GPU?
# None -- CPU only
# 0 or (0,) -- Use GPU0
# (0, 1) -- Use GPU0 and GPU1
'GPUs': 0
}
if isinstance(parameters['GPUs'], int):
parameters['GPUs'] = (parameters['GPUs'], )
for wp in ('wp{}'.format(i) for i in range(1, 9)): # Training from WP1 to WP8
cadset = MyDataset(
filelist='../dataset/{}_cad.txt'.format(wp),
input_transform=transforms.Compose([
Resize((300, 300)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
)
realset = MyDataset(
filelist='../dataset/{}_real.txt'.format(wp),
input_transform=transforms.Compose([
Resize((300, 300)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
)
model = Model(parameters['n_classes'])
# If you need to load your pretrained model, uncomment the following line.
# model.load_state_dict(torch.load('{}-cold.pth'.format(wp)))
if parameters['GPUs']:
model = model.cuda(parameters['GPUs'][0])
if len(parameters['GPUs']) > 1:
model = nn.DataParallel(model, device_ids=parameters['GPUs'])
optimizer = SGD(model.parameters(), lr=0.01, momentum=0.9)
try:
# Cold stage
recall, ap, meanap = train(model, cadset, realset, optimizer, hot=False,
summarywriter=writer, savefilename='{}-cold.pth'.format(wp), **parameters)
logging.info('{}, Recall: {}, AP: {}, mean AP: {}'.format(wp, recall, ap, meanap))
print('{}, Recall: {}, AP: {}, mean AP: {}'.format(wp, recall, ap, meanap))
# Hot stage
recall, ap, meanap = train(model, cadset, realset, optimizer, hot=True,
summarywriter=writer, savefilename='{}-hot.pth'.format(wp), **parameters)
logging.info('{}-hot, Recall: {}, AP: {}, mean AP: {}'.format(wp, recall, ap, meanap))
print('{}-hot, Recall: {}, AP: {}, mean AP: {}'.format(wp, recall, ap, meanap))
except Exception as e:
logging.info('{} error!{}'.format(wp, e))
print('{} error!{}'.format(wp, e))
traceback.print_exc()