forked from rujunhan/reinforcement-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathworker_test.py
100 lines (82 loc) · 3.14 KB
/
worker_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import gym
import sys
import os
import itertools
import collections
import unittest
import numpy as np
import tensorflow as tf
from inspect import getsourcefile
current_path = os.path.dirname(os.path.abspath(getsourcefile(lambda:0)))
import_path = os.path.abspath(os.path.join(current_path, "../.."))
if import_path not in sys.path:
sys.path.append(import_path)
# from lib import plotting
from lib.atari.state_processor import StateProcessor
from lib.atari import helpers as atari_helpers
from worker import Worker
from estimators import ValueEstimator, PolicyEstimator
def make_env():
return gym.envs.make("Breakout-v0")
VALID_ACTIONS = [0, 1, 2, 3]
class WorkerTest(tf.test.TestCase):
def setUp(self):
super(WorkerTest, self).setUp()
self.env = make_env()
self.discount_factor = 0.99
self.global_step = tf.Variable(0, name="global_step", trainable=False)
self.global_counter = itertools.count()
self.sp = StateProcessor()
with tf.variable_scope("global") as vs:
self.global_policy_net = PolicyEstimator(len(VALID_ACTIONS))
self.global_value_net = ValueEstimator(reuse=True)
def testPolicyNetPredict(self):
w = Worker(
name="test",
env=make_env(),
policy_net=self.global_policy_net,
value_net=self.global_value_net,
global_counter=self.global_counter,
discount_factor=self.discount_factor)
with self.test_session() as sess:
sess.run(tf.initialize_all_variables())
state = self.sp.process(self.env.reset())
processed_state = atari_helpers.atari_make_initial_state(state)
action_values = w._policy_net_predict(processed_state, sess)
self.assertEqual(action_values.shape, (4,))
def testValueNetPredict(self):
w = Worker(
name="test",
env=make_env(),
policy_net=self.global_policy_net,
value_net=self.global_value_net,
global_counter=self.global_counter,
discount_factor=self.discount_factor)
with self.test_session() as sess:
sess.run(tf.initialize_all_variables())
state = self.sp.process(self.env.reset())
processed_state = atari_helpers.atari_make_initial_state(state)
state_value = w._value_net_predict(processed_state, sess)
self.assertEqual(state_value.shape, ())
def testRunNStepsAndUpdate(self):
w = Worker(
name="test",
env=make_env(),
policy_net=self.global_policy_net,
value_net=self.global_value_net,
global_counter=self.global_counter,
discount_factor=self.discount_factor)
with self.test_session() as sess:
sess.run(tf.initialize_all_variables())
state = self.sp.process(self.env.reset())
processed_state = atari_helpers.atari_make_initial_state(state)
w.state = processed_state
transitions, local_t, global_t = w.run_n_steps(10, sess)
policy_net_loss, value_net_loss, policy_net_summaries, value_net_summaries = w.update(transitions, sess)
self.assertEqual(len(transitions), 10)
self.assertIsNotNone(policy_net_loss)
self.assertIsNotNone(value_net_loss)
self.assertIsNotNone(policy_net_summaries)
self.assertIsNotNone(value_net_summaries)
if __name__ == '__main__':
unittest.main()