forked from mit-ll/em-download-opensky
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerateQueries_1.m
637 lines (528 loc) · 24.2 KB
/
generateQueries_1.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
function [queries, groups, boxLat_deg, boxLon_deg, minAlt_m_msl, maxAlt_m_msl] = generateQueries(fileAirspace, varargin)
% Copyright 2018 - 2024, MIT Lincoln Laboratory
% SPDX-License-Identifier: BSD-2-Clause
%% Input parser
p = inputParser;
% Required
addRequired(p, 'fileAirspace'); % Input airspace from em-core
% Optional - Output File
addOptional(p, 'outFile', [getenv('AEM_DIR_OPENSKY') filesep 'output' filesep 'queries.txt']); % Output filename
addOptional(p, 'isWrite', true, @islogical); % If true, write to file
addOptional(p, 'queriesPerGroup', 1000, @isnumeric); % Maximum number of queries per group (groups will be used for load balencing / directory structure)
% Optional - Boundary / Bounding Box parameters
addOptional(p, 'rad_nm', 8, @isnumeric); % Radius of small circles away from aerodromes
addOptional(p, 'areaThres_nm', 600, @isnumeric); % Maximum bounding box size (will divide boxes larger than this)
addOptional(p, 'classInclude', {'B', 'C', 'D'}, @iscell); % Airspace classes to include
addOptional(p, 'maxConvgInit', 20, @isnumeric); % Maximum iterations to attempt when unioning bound box
% Optional - Altitude Limits
addOptional(p, 'minAGL_ft', 0, @isnumeric); % Minimum barometric altitude (feet AGL)
addOptional(p, 'maxAGL_ft', 5100, @isnumeric); % Maximum barometric altitude (feet AGL)
addOptional(p, 'maxMSL_ft', 12500, @isnumeric); % Maximum barometric altitude (feet MSL)
% Optional - Timezones
addOptional(p, 'timeStart', datetime('2019-01-01 05:00:00'), @isdatetime); % Start time (no time zone)
addOptional(p, 'timeEnd', datetime('2019-01-01 23:00:00'), @isdatetime); % End time
addOptional(p, 'timeStep', hours(1), @isduration); % Time step
% Optional - Random Seed
addOptional(p, 'rngSeed', 42, @isnumeric); % Random seed
addOptional(p, 'isRandomize', true, @islogical); % If true, random order of queries (this often helps with load balancing)
% Optional - Plot and Display
addOptional(p, 'isPlotBoundary', false, @islogical);
addOptional(p, 'isPlotFinal', true, @islogical);
% Optional - Reuse bounding boxes
addOptional(p, 'boxLat_deg', {}, @iscell);
addOptional(p, 'boxLon_deg', {}, @iscell);
addOptional(p, 'minAlt_m_msl', [], @isnumeric);
addOptional(p, 'maxAlt_m_msl', [], @isnumeric);
% Parse
parse(p, fileAirspace, varargin{:});
%% Warnings and Input Handling
if p.Results.queriesPerGroup > 1000
warning('queriesPerGroup:max', ...
'queriesPerGroup = %i, Strongly recommended for HPC storage to set queriesPerGroup around 1000\n', ...
p.Results.queriesPerGroup);
end
% Check lat / lon are the same
assert(size(p.Results.boxLat_deg, 1) == size(p.Results.boxLon_deg, 1) & size(p.Results.boxLat_deg, 2) == size(p.Results.boxLon_deg, 2), 'generateQueries:bboxsize', 'bounding boxes are not the same size\n');
% Check altitude is the same
assert(size(p.Results.minAlt_m_msl, 1) == size(p.Results.maxAlt_m_msl, 1) & size(p.Results.minAlt_m_msl, 2) == size(p.Results.maxAlt_m_msl, 2), 'generateQueries:altsize', 'altitudes are not the same size\n');
% Check lat / lon and altitude are the same
assert(size(p.Results.minAlt_m_msl, 1) == size(p.Results.boxLon_deg, 1) & size(p.Results.minAlt_m_msl, 2) == size(p.Results.boxLon_deg, 2), 'generateQueries:bboxaltsize', 'bounding box and altitudes are not the same size\n');
%% Preallocate output
queries = strings(0, 0);
groups = ones(0, 0);
boxLat_deg = p.Results.boxLat_deg;
boxLon_deg = p.Results.boxLon_deg;
minAlt_m_msl = p.Results.minAlt_m_msl;
maxAlt_m_msl = p.Results.maxAlt_m_msl;
%% Set random seed
rng(p.Results.rngSeed, 'twister');
%% Load and parse airports and airspace
if any(strcmpi(p.UsingDefaults, 'boxLat_deg'))
% Load Airports
file_airports = [getenv('AEM_DIR_CORE') filesep 'data' filesep 'FAA-Airports' filesep 'Airports'];
S_airports = m_shaperead(file_airports);
% Load Airspace
load(fileAirspace, 'airspace');
% Parse airports
% Find column index
idxName = find(strcmpi(S_airports.fieldnames, 'name'));
idxLat = find(strcmpi(S_airports.fieldnames, 'latitude'));
idxLon = find(strcmpi(S_airports.fieldnames, 'longitude'));
% Parse
names = lower(string(S_airports.dbfdata(:, idxName)));
latAirports_dms = S_airports.dbfdata(:, idxLat);
lonAirports_dms = S_airports.dbfdata(:, idxLon);
% String split to break out each individual word
namesSplit = cellfun(@strsplit, names, 'uni', false);
namesSplit = cellfun(@string, namesSplit, 'UniformOutput', false);
% Parse hemisphere
lat_sense = cellfun(@(x)(x(end)), latAirports_dms, 'uni', false);
lon_sense = cellfun(@(x)(x(end)), lonAirports_dms, 'uni', false);
% String split degrees, minutes, seconds
latAirports_dms = cellfun(@(x)(str2double(strsplit(x(1:end - 1), '-'))), latAirports_dms, 'uni', false);
lonAirports_dms = cellfun(@(x)(str2double(strsplit(x(1:end - 1), '-'))), lonAirports_dms, 'uni', false);
% Filter out bad lat / lon
lbad = (cellfun(@numel, latAirports_dms) ~= 3) | (cellfun(@numel, lonAirports_dms) ~= 3);
names = names(~lbad);
latAirports_dms = latAirports_dms(~lbad);
lonAirports_dms = lonAirports_dms(~lbad);
lat_sense = lat_sense(~lbad);
lon_sense = lon_sense(~lbad);
% Convert to decimal degrees
latAirports_dms = cell2mat(latAirports_dms);
lonAirports_dms = cell2mat(lonAirports_dms);
if any(strcmpi(lat_sense, 'S'))
latAirports_dms(strcmpi(lat_sense, 'S'), 1) = -1 * latAirports_dms(strcmpi(lat_sense, 'S'), 1);
end
if any(strcmpi(lon_sense, 'W'))
lonAirports_dms(strcmpi(lon_sense, 'W'), 1) = -1 * lonAirports_dms(strcmpi(lon_sense, 'W'), 1);
end
latAirports_deg = dms2degrees(latAirports_dms);
lonAirports_deg = dms2degrees(lonAirports_dms);
% Filter Airspace
% Create filters for individual airspace classes
isF = airspace.CLASS == 'F';
isE = airspace.CLASS == 'E';
isD = airspace.CLASS == 'D';
isC = airspace.CLASS == 'C';
isB = airspace.CLASS == 'B';
% Create aggregate logical filter
isClass = false(size(airspace, 1), 1);
if any(strcmpi('B', p.Results.classInclude))
isClass = isClass | isB;
end
if any(strcmpi('C', p.Results.classInclude))
isClass = isClass | isC;
end
if any(strcmpi('D', p.Results.classInclude))
isClass = isClass | isD;
end
if any(strcmpi('E', p.Results.classInclude))
isClass = isClass | isE;
end
if any(strcmpi('F', p.Results.classInclude))
isClass = isClass | isF;
end
% Filter airspace table
airspace = airspace(isClass, :);
% Calculate altitude AGL extremes
airspace.minAGL_ft = cellfun(@min, airspace.LOWALT_ft_agl);
airspace.maxAGL_ft = cellfun(@min, airspace.HIGHALT_ft_agl);
end
%% Create polygons based on aerodromes within an airspace
if any(strcmpi(p.UsingDefaults, 'boxLat_deg'))
% Preallocate
pgons(size(airspace, 1), 1) = polyshape();
for i = 1:1:size(airspace, 1)
% Get airspace points and remove nan
[lat_deg, lon_deg] = polyjoin(airspace.LAT_deg(i), airspace.LON_deg(i));
lat_deg = lat_deg(~isnan(lat_deg));
lon_deg = lon_deg(~isnan(lon_deg));
% Convex hull of airspace points
kair = convhull(lat_deg, lon_deg);
% Identify airports within convex hull of airspace
lport = InPolygon(latAirports_deg, lonAirports_deg, lat_deg(kair), lon_deg(kair));
if any(lport)
% Circle small circles around airports
[clat_deg, clon_deg] = scircle1(latAirports_deg(lport), ...
lonAirports_deg(lport), ...
repmat(p.Results.rad_nm, ...
sum(lport), ...
1), ...
[], ...
wgs84Ellipsoid('nm'));
% Rearrange to column array
clat_deg = clat_deg(:);
clon_deg = clon_deg(:);
% Convex hull of airport small circles points
kport = convhull(clat_deg, clon_deg);
% Find min / max
minLat_deg = min(clat_deg(kport));
maxLat_deg = max(clat_deg(kport));
minLon_deg = min(clon_deg(kport));
maxLon_deg = max(clon_deg(kport));
% Create ith polyshape as the bounding box
pgons(i) = polyshape([minLon_deg, maxLon_deg, maxLon_deg, minLon_deg], ...
[minLat_deg, minLat_deg, maxLat_deg, maxLat_deg]);
% Plot
if p.Results.isPlotBoundary
% Create figure
figure(i);
set(gcf, 'Name', airspace.NAME{i});
gx = geoaxes('Basemap', 'streets', ...
'FontSize', 14, ...
'FontWeight', 'bold');
bmap = geobasemap(gx);
hold on;
% Populate map
geoscatter(latAirports_deg(lport), ...
lonAirports_deg(lport), ...
20, ...
'k', ...
'd', ...
'filled');
geoplot(lat_deg(kair), ...
lon_deg(kair), ...
'Color', [0 114 178] / 255, ...
'LineStyle', '--', ...
'LineWidth', 2.5);
geoplot(clat_deg(kport), ...
clon_deg(kport), ...
'Color', [0 158 155] / 255, ...
'LineStyle', '-', ...
'LineWidth', 5);
hold off;
% Legend, labels, Adjust map size
legend({'Aerodrome', 'Airspace', 'Boundary'}, ...
'Location', 'southoutside', 'NumColumns', 3);
gx.LatitudeLabel.String = '';
gx.LongitudeLabel.String = '';
set(gcf, 'Units', 'inches', ...
'Position', [1 1 5.82 5.28]);
end
end
end
% Union of polyshape objects of small circles
polyunion = union(pgons);
% Remove holes
polyunion = rmholes(polyunion);
end
%% Iteratively union bounding boxes
if any(strcmpi(p.UsingDefaults, 'boxLat_deg'))
% Record the current number of regions
nRegions = polyunion.NumRegions;
% Extract out each region
[latcells, loncells] = polysplit(polyunion.Vertices(:, 2), polyunion.Vertices(:, 1));
% Preallocate
polybox(nRegions, 1) = polyshape();
% Counters
isConvg = false;
c = 0;
% Iterate
while ~isConvg
% Find min / max
minLat_deg = cellfun(@min, latcells);
maxLat_deg = cellfun(@max, latcells);
minLon_deg = cellfun(@min, loncells);
maxLon_deg = cellfun(@max, loncells);
% Create ith polyshape as the bounding box
for i = 1:1:nRegions
polybox(i) = polyshape([minLon_deg(i), maxLon_deg(i), maxLon_deg(i), minLon_deg(i)], ...
[minLat_deg(i), minLat_deg(i), maxLat_deg(i), maxLat_deg(i)]);
end
% Union of polyshape objects of small circles
polybox = union(polybox);
% Remove holes
polybox = rmholes(polybox);
% Check if we reached convergence
if polybox.NumRegions < nRegions
isConvg = false;
% Extract out each region
[latcells, loncells] = polysplit(polybox.Vertices(:, 2), polybox.Vertices(:, 1));
% Preallocate
polybox(nRegions, 1) = polyshape();
else
isConvg = true;
end
% Update counters
nRegions = polybox.NumRegions;
c = c + 1;
% Make sure we don't get stuck in a while loop
if c == p.Results.maxConvgInit
isConvg = true;
warning('Convergence not reached');
end
end
end
%% Split bounding boxes if they are too large
if any(strcmpi(p.UsingDefaults, 'boxLat_deg'))
% Extract out each bounding box
[latcells, loncells] = polysplit(polybox.Vertices(:, 2), polybox.Vertices(:, 1));
% Preallocate
boxLat_deg = cell(nRegions, 1);
boxLon_deg = cell(nRegions, 1);
% Calculate area
area_nm = cellfun(@(lat, lon)(areaint(lat, lon, wgs84Ellipsoid('nm'))), latcells, loncells, 'uni', true);
% Iterate over bounding boxes
for i = 1:1:nRegions
% Do something if area is greater than threshold
if area_nm(i) > p.Results.areaThres_nm
% Determine number of splits
nDivid = ceil(area_nm(i) / p.Results.areaThres_nm);
% Round to nearest multiple of two
nDivid = 2 * ceil(nDivid / 2);
% If the bounding box is really big, divide some more
% 14 was heuristically picked
if nDivid > 14
nDivid = nDivid * 2;
end
% Divide along X & Y
switch nDivid
case 2
NX = 2;
NY = 1;
case 4
NX = 2;
NY = 2;
case 6
NX = 3;
NY = 2;
case 8
NX = 4;
NY = 2;
otherwise
NX = ceil(sqrt(nDivid));
NY = ceil(sqrt(nDivid));
if NY <= 0
NY == 1;
end
end
% Parse and divide
poly.x = loncells{i};
poly.y = latcells{i};
PXY = DIVIDEXY(poly, NX, NY);
PXY = PXY(~cellfun(@isempty, PXY));
% Convert to column
PXY = PXY(:);
% Convert to polyshapes
px = cellfun(@(p)(p.x), PXY, 'uni', false);
py = cellfun(@(p)(p.y), PXY, 'uni', false);
% Assign
[boxLat_deg{i}, boxLon_deg{i}] = polyjoin(py, px);
else
boxLat_deg{i} = latcells{i};
boxLon_deg{i} = loncells{i};
end
end
% Join and split
[lat, lon] = polyjoin(boxLat_deg, boxLon_deg);
[boxLat_deg, boxLon_deg] = polysplit(lat, lon);
% Find min / max
minLat_deg = cellfun(@min, boxLat_deg);
maxLat_deg = cellfun(@max, boxLat_deg);
minLon_deg = cellfun(@min, boxLon_deg);
maxLon_deg = cellfun(@max, boxLon_deg);
end
%% Now that we have nice grids, remove airspaces not of interest
if any(strcmpi(p.UsingDefaults, 'boxLat_deg'))
% Preallocate
isKeep = false(size(boxLat_deg));
% Split into cells so we can easily iterate over them using parfor
[latUnion, lonUnion] = polysplit(polyunion.Vertices(:, 2), polyunion.Vertices(:, 1));
% Iterate over bounding boxes
parfor i = 1:1:numel(boxLat_deg)
% Create grid
[X, Y] = meshgrid(minLon_deg(i):nm2deg(0.1):maxLon_deg(i), ...
minLat_deg(i):nm2deg(0.1):maxLat_deg(i));
% Determine if a point within the grid is within the original unioned polygon
li = cellfun(@(lat, lon)(any(InPolygon(Y(:), X(:), lat, lon))), latUnion, lonUnion, 'uni', true);
% Assign
isKeep(i) = any(li);
end
% Filter
boxLat_deg = boxLat_deg(isKeep);
boxLon_deg = boxLon_deg(isKeep);
end
%% Find min / max
minLat_deg = cellfun(@min, boxLat_deg);
maxLat_deg = cellfun(@max, boxLat_deg);
minLon_deg = cellfun(@min, boxLon_deg);
maxLon_deg = cellfun(@max, boxLon_deg);
%% Determine local time zone
% You may not set the 'TimeZone' property of individual elements of a datetime array.
% Time zone based on longitude
[zd, ~, ~] = timezone(minLon_deg, 'degrees');
tz = strings(size(zd));
for i = 1:1:numel(tz)
if zd(i) >= 0
tz(i) = sprintf('+%02.0f:00', zd(i));
else
tz(i) = sprintf('-%02.0f:00', zd(i));
end
end
%% Plot
if p.Results.isPlotFinal
figure(100000);
gx = geoaxes('Basemap', 'streets', ...
'FontSize', 14, ...
'FontWeight', 'bold');
bmap = geobasemap(gx);
hold on;
% Create a closed polygon
[latunion, lonunion] = polysplit(polyunion.Vertices(:, 2), polyunion.Vertices(:, 1));
latunion = cellfun(@(x)([x; x(1)]), latunion, 'uni', false);
lonunion = cellfun(@(x)([x; x(1)]), lonunion, 'uni', false);
[latunion, lonunion] = polyjoin(latunion, lonunion);
% Plot closed polygon
geoplot(latunion, lonunion, 'Color', 'k', 'LineStyle', '-', 'LineWidth', 1);
% geolimits([24 50], [-125,-65]); % Only show conus
geolimits([40 44], [-75, -70]); % NYC + BOS
gx.LatitudeLabel.String = '';
gx.LongitudeLabel.String = '';
hold off;
figure(100001);
gx = geoaxes('Basemap', 'streets', ...
'FontSize', 14, ...
'FontWeight', 'bold');
bmap = geobasemap(gx);
hold on;
lat = cellfun(@(x)([x; x(1)]), boxLat_deg, 'uni', false);
lon = cellfun(@(x)([x; x(1)]), boxLon_deg, 'uni', false);
[lat, lon] = polyjoin(lat, lon);
% Plot closed polygon
geoplot(lat, lon, 'Color', 'k', 'LineStyle', '-', 'LineWidth', 1);
% geolimits([24 50], [-125,-65]); % Only show conus
geolimits([40 44], [-75, -70]); % NYC + BOS
gx.LatitudeLabel.String = '';
gx.LongitudeLabel.String = '';
hold off;
figure(100002);
gx = geoaxes('Basemap', 'streets-dark', ...
'FontSize', 14, ...
'FontWeight', 'bold');
bmap = geobasemap(gx);
hold on;
geoplot(lat, lon, 'Color', 'y', 'LineStyle', '-', 'LineWidth', 0.5);
geolimits([24 50], [-125, -65]); % Only show conus
gx.LatitudeLabel.String = '';
gx.LongitudeLabel.String = '';
hold off;
end
%% Get altitude MSL feet extremes
if any(strcmpi(p.UsingDefaults, 'minAlt_m_msl'))
% Preallocate
minAlt_m_msl = zeros(size(boxLat_deg));
maxAlt_m_msl = zeros(size(boxLat_deg));
% Iterate over bounding boxes
parfor i = 1:1:numel(boxLat_deg)
% NOAA GLOBE is 30 arc seconds = 1 km = 0.5 nautical miles
[X, Y] = meshgrid(minLon_deg(i):nm2deg(0.5):maxLon_deg(i), minLat_deg(i):nm2deg(0.5):maxLat_deg(i));
% Get elevation
[el_ft_msl, ~, ~, ~] = msl2agl(Y(:), X(:), 'globe');
% Convert units
el_m_msl = el_ft_msl * unitsratio('m', 'ft');
% Calculate floor and ceiling
minAlt_m_msl(i) = floor(min(el_m_msl) + (p.Results.minAGL_ft * unitsratio('m', 'ft')));
maxAlt_m_msl(i) = ceil(max(el_m_msl) + (p.Results.maxAGL_ft * unitsratio('m', 'ft')));
end
% Adjust altitude to max altitude MSL if needed
maxMSL_m = p.Results.maxMSL_ft * unitsratio('m', 'ft');
isHigh = maxAlt_m_msl > maxMSL_m;
maxAlt_m_msl(isHigh) = floor(maxMSL_m);
end
%% Plot
if p.Results.isPlotFinal
figure(100003);
histogram((maxAlt_m_msl - minAlt_m_msl) * unitsratio('ft', 'm'), 'Normalization', 'cdf');
xlabel('Maximum Altitude AGL (ft) Within Bounding Box');
grid on;
end
%% Create queries and write to file
% Preallocate
queries = strings((numel(p.Results.timeStart:p.Results.timeStep:p.Results.timeEnd) - 1) * numel(boxLat_deg), 1);
cq = 1; % queries counter
% Iterate over bounding boxes
for i = 1:1:numel(boxLat_deg)
% Local time
timeStart_local = datetime(p.Results.timeStart.Year, ...
p.Results.timeStart.Month, ...
p.Results.timeStart.Day, ...
p.Results.timeStart.Hour, ...
p.Results.timeStart.Minute, ...
p.Results.timeStart.Second, ...
'TimeZone', tz(i));
timeEnd_local = datetime(p.Results.timeEnd.Year, ...
p.Results.timeEnd.Month, ...
p.Results.timeEnd.Day, ...
p.Results.timeEnd.Hour, ...
p.Results.timeEnd.Minute, ...
p.Results.timeEnd.Second, ...
'TimeZone', tz(i));
% UTC time
timeStart_utc = timeStart_local;
timeStart_utc.TimeZone = 'UTC';
timeEnd_utc = datetime(timeEnd_local, 'TimeZone', 'UTC');
% Get all timesteps
time_utc = timeStart_utc:p.Results.timeStep:timeEnd_utc;
% Iterate over time
for j = 1:1:numel(time_utc) - 1
% POSIX Time
timeStart_posix = posixtime(time_utc(j));
timeEnd_posix = posixtime(time_utc(j + 1));
% Create query
query = sprintf('SELECT * FROM state_vectors_data4 WHERE baroaltitude>=%i AND baroaltitude<=%i AND lon>=%f AND lon<=%f AND lat>=%f AND lat<=%f AND time>=%i AND hour>=%i AND time<=%i AND hour<=%i;quit;', ...
minAlt_m_msl(i), ...
maxAlt_m_msl(i), ...
minLon_deg(i), ...
maxLon_deg(i), ...
minLat_deg(i), ...
maxLat_deg(i), ...
timeStart_posix, ...
timeStart_posix, ...
timeEnd_posix, ...
timeEnd_posix);
% Write to workspace variable
queries(cq) = query;
cq = cq + 1;
end
end
%% Assign groups
% Determine total number of queries
nQueries = numel(queries);
% Preallocate output
groups = ones(nQueries, 1);
% Only do something if needed
if nQueries > p.Results.queriesPerGroup
% Calculate number of directories required
nDir = ceil(nQueries / p.Results.queriesPerGroup);
% Create group edges
groupEdges = floor(linspace(1, nQueries, nDir + 1))';
% Assign groups
for i = 1:1:numel(groupEdges) - 1
groups(groupEdges(i):groupEdges(i + 1)) = i;
end
end
%% Randomize order
% We do this to help with load balancing when using queries
if p.Results.isRandomize
pidx = randperm(numel(queries));
queries = queries(pidx);
groups = groups(pidx);
boxLat_deg = boxLat_deg(pidx);
boxLon_deg = boxLon_deg(pidx);
minAlt_m_msl = minAlt_m_msl(pidx);
maxAlt_m_msl = maxAlt_m_msl(pidx);
end
%% Write to file
if p.Results.isWrite
% Open File
fid = fopen(p.Results.outFile, 'w+');
% Write to file
fprintf(fid, '%s\n', queries);
% Close file
fclose(fid);
% Repeat process but for groups
fid = fopen([p.Results.outFile(1:end - 4) '_groups.txt'], 'w+');
fprintf(fid, '%i\n', groups);
fclose(fid);
end