-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_CVAE.py
390 lines (304 loc) · 15.7 KB
/
train_CVAE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
import os
import shutil
import numpy as np
import math
from options.train_options import TrainOptions
import torch
from torch import nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision import transforms
from models.models import create_model
from data.VGGface2HQ import VGGFace2HQDataset, ComposedLoader
from utils.visualizer import Visualizer
from utils import utils
from utils.loss import get_loss_dict
from utils.plot import plot_batch
from collections import OrderedDict
import time
import tqdm
import warnings
from utils.loss import IDLoss
detransformer_Arcface = transforms.Compose([
transforms.Normalize([0, 0, 0], [1 / 0.229, 1 / 0.224, 1 / 0.225]),
transforms.Normalize([-0.485, -0.456, -0.406], [1, 1, 1])
])
class Trainer:
def __init__(self, loader, model, opt, start_epoch, epoch_iter, visualizer):
super(Trainer, self).__init__()
self.model = model
self.opt = opt
self.loader = loader
self.losses = []
self.start_epoch = start_epoch
self.start_epoch_iter = epoch_iter
self.total_iter = (start_epoch - 1) * len(loader) + epoch_iter
self.memory_last = 0
self.memory_first = None
self.visualizer = visualizer
self.sample_path = os.path.join(opt.checkpoints_dir, opt.name, 'samples', 'train')
self.sample_size = min(8, opt.batchSize)
if opt.verbose:
print('Trainer initialized.')
if opt.debug:
print('Model instance in trainer iter: {}.'.format(self.model.module.iter))
def train(self, epoch_idx):
opt = self.opt
if opt.verbose:
print('Training...')
if opt.debug:
print('Model instance to be trained iter: {}.'.format(self.model.module.iter))
epoch_start_time = time.time()
epoch_iter = self.start_epoch_iter if epoch_idx == self.start_epoch else 0
visualizer = self.visualizer
display_delta = self.total_iter % opt.display_freq
print_delta = self.total_iter % opt.print_freq
save_delta = self.total_iter % opt.save_latest_freq
for batch_idx, ((img_source, img_target), (latent_ID, _), is_same_ID) in enumerate(self.loader, start=1):
self.model.train()
if opt.debug:
print('Batch {}: model instance to be trained iter: {}.'.format(batch_idx, self.model.module.iter))
if self.total_iter % opt.print_freq == print_delta:
iter_start_time = time.time()
if len(opt.gpu_ids):
img_target, latent_ID = img_target.to('cuda'), latent_ID.to('cuda')
# count iterations
batch_size = len(is_same_ID)
self.total_iter += batch_size
self.model.module.iter = self.total_iter
epoch_iter += batch_size
is_same_ID = is_same_ID[0].detach().item()
########### FORWARD ###########
[losses, _] = model(img_target, latent_ID, is_same_ID)
############ LOSSES ############
# gather losses
losses = [torch.mean(x) if not isinstance(x, int) else x for x in losses]
# loss dictionary
# loss_dict = dict(zip(self.model.module.loss_names, losses))
loss_dict = get_loss_dict(self.model.module.loss_names, losses, opt)
# calculate final loss scalar
loss_G = loss_dict['G_GAN'] + loss_dict['G_Rec'] + loss_dict['G_KL'] + loss_dict['G_ID']
loss_D = loss_dict['D_real'] + loss_dict['D_fake'] + loss_dict['D_GP']
############ BACKWARD ############
self.model.module.optim.zero_grad()
loss_G.backward()
self.model.module.optim.step()
self.model.module.optim_D.zero_grad()
loss_D.backward()
self.model.module.optim_D.step()
# save loss
losses = [loss if isinstance(loss, int) else loss.detach().cpu().item() for loss in losses]
self.losses += [losses]
# print result
if self.total_iter % opt.print_freq == print_delta:
errors = get_loss_dict(self.model.module.loss_names, losses, opt)
avg_iter_time = (time.time() - iter_start_time) / opt.print_freq
visualizer.print_current_errors(epoch_idx, epoch_iter, errors, avg_iter_time)
visualizer.plot_current_errors(errors, self.total_iter)
# display images
if self.total_iter % opt.display_freq == display_delta:
if not os.path.exists(self.sample_path):
os.mkdir(self.sample_path)
'''
self.model.module.M1.eval()
self.model.module.E.eval()
self.model.module.M2.eval()
self.model.module.D.eval()
'''
self.model.module.eval()
self.model.module.isTrain = False
with torch.no_grad():
img_source = img_source[:self.sample_size].to('cuda')
latent_ID = latent_ID[:self.sample_size]
imgs = []
zero_img = (torch.zeros_like(img_source[0, ...]))
imgs.append(zero_img.cpu().numpy())
save_img = (detransformer_Arcface(img_source.cpu())).numpy()
for r in range(self.sample_size):
imgs.append(save_img[r, ...])
for i in range(self.sample_size):
imgs.append(save_img[i, ...])
image_infer = img_source[i, ...].repeat(self.sample_size, 1, 1, 1)
img_fake = model.module(image_infer, latent_ID).cpu().numpy()
for j in range(self.sample_size):
imgs.append(img_fake[j, ...])
print("Save test data for iter {}.".format(self.total_iter))
imgs = np.stack(imgs, axis=0).transpose(0, 2, 3, 1)
plot_batch(imgs, os.path.join(self.sample_path, 'step_' + str(self.total_iter) + '.jpg'))
self.model.module.isTrain = True
# visuals = OrderedDict([('source_img', utils.tensor2im(img_target[0])),
# ('id_img', utils.tensor2im(img_source[0])),
# ('generated_img', utils.tensor2im(img_fake.data[0]))
# ])
# visualizer.display_current_results(visuals, epoch_idx, self.total_iter)
# save model
if (self.total_iter % opt.save_latest_freq == save_delta):
self.model.module.save('latest')
self.model.module.save('{}_iter'.format(self.total_iter))
np.savetxt(iter_path, (epoch_idx, epoch_iter), delimiter=',', fmt='%d')
# memory log
if opt.memory_check:
if self.memory_first is None:
self.memory_first = torch.cuda.memory_allocated()
print("Memory increase: {}MiB".format((torch.cuda.memory_allocated() - self.memory_last) / 1024. / 1024.))
print("Total memory increase: {}MiB".format(
(torch.cuda.memory_allocated() - self.memory_first) / 1024. / 1024.))
self.memory_last = torch.cuda.memory_allocated()
# early stop
if epoch_iter >= opt.max_dataset_size:
break
def test(opt, model, loader, epoch_idx, total_iter, visualizer):
test_start_time = time.time()
model.eval()
test_iter = 0
test_losses = []
print('Testing...')
if opt.debug:
print('Model instance being tested iter: {}.'.format(model.module.iter))
for batch_idx, ((img_source, img_target), (latent_ID, _), is_same_ID) in enumerate(tqdm.tqdm(loader)):
batch_size = len(is_same_ID)
test_iter += batch_size
if len(opt.gpu_ids):
img_target, latent_ID = img_target.to('cuda'), latent_ID.to('cuda')
is_same_ID = is_same_ID[0].detach().item()
########### FORWARD ###########
[losses, _] = model(img_target, latent_ID, is_same_ID)
# gather losses
losses = [torch.mean(x) if not isinstance(x, int) else x for x in losses]
losses = [loss.detach().cpu().item() for loss in losses]
# save loss
if not len(test_losses):
test_losses = losses
else:
test_losses = [
test_loss + loss * batch_size
for test_loss, loss in zip(test_losses, losses)]
# display images
if batch_idx == 0:
sample_size = min(8, opt.batchSize)
sample_path = os.path.join(opt.checkpoints_dir, opt.name, 'samples', 'test')
if not os.path.exists(sample_path):
os.mkdir(sample_path)
'''
self.model.module.M1.eval()
self.model.module.E.eval()
self.model.module.M2.eval()
self.model.module.D.eval()
'''
model.module.eval()
model.module.isTrain = False
with torch.no_grad():
img_source = img_source[:sample_size].to('cuda')
latent_ID = latent_ID[:sample_size]
imgs = []
zero_img = (torch.zeros_like(img_source[0, ...]))
imgs.append(zero_img.cpu().numpy())
save_img = (detransformer_Arcface(img_source.cpu())).numpy()
for r in range(sample_size):
imgs.append(save_img[r, ...])
for i in range(sample_size):
imgs.append(save_img[i, ...])
image_infer = img_source[i, ...].repeat(sample_size, 1, 1, 1)
img_fake = model.module(image_infer, latent_ID).cpu().numpy()
for j in range(sample_size):
imgs.append(img_fake[j, ...])
imgs = np.stack(imgs, axis=0).transpose(0, 2, 3, 1)
plot_batch(imgs, os.path.join(sample_path, 'step_' + str(total_iter) + '.jpg'))
model.module.isTrain = True
# early stop
if test_iter >= opt.max_dataset_size:
break
# print result
test_losses = [test_loss / test_iter for test_loss in test_losses]
test_losses = get_loss_dict(model.module.loss_names, test_losses, opt)
test_time = time.time() - test_start_time
visualizer.print_current_errors_test(epoch_idx, total_iter, test_losses, test_time)
visualizer.plot_current_errors_test(test_losses, total_iter)
if __name__ == '__main__':
warnings.filterwarnings("ignore")
torch.backends.cudnn.benchmark = True
os.environ['KMP_DUPLICATE_LIB_OK']='True'
opt = TrainOptions().parse()
if len(opt.gpu_ids):
print('GPU available: {}'.format(torch.cuda.is_available()))
print('GPU count: {}'.format(torch.cuda.device_count()))
transformer_Arcface = transforms.Compose([
transforms.ToTensor(),
transforms.Resize((opt.image_size, opt.image_size)),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
if opt.fp16:
from torch.cuda.amp import autocast
print("Generating data loaders...")
train_data = VGGFace2HQDataset(opt, isTrain=True, transform=transformer_Arcface, is_same_ID=True, auto_same_ID=True)
train_loader = DataLoader(dataset=train_data, batch_size=opt.batchSize, shuffle=True, num_workers=opt.nThreads, worker_init_fn=train_data.set_worker)
test_data = VGGFace2HQDataset(opt, isTrain=False, transform=transformer_Arcface, is_same_ID=True, auto_same_ID=True)
test_loader = DataLoader(dataset=test_data, batch_size=opt.batchSize, shuffle=True, num_workers=opt.nThreads, worker_init_fn=train_data.set_worker)
print("Dataloaders ready.")
opt.max_dataset_size = min(opt.max_dataset_size, len(train_data))
###############################################################################
# Code from
# https://github.com/a312863063/SimSwap-train
###############################################################################
save_path = os.path.join(opt.checkpoints_dir, opt.name)
if not os.path.exists(save_path):
os.mkdir(save_path)
if opt.continue_train: # copy official checkpoint
shutil.copyfile(os.path.join(opt.checkpoints_dir, opt.load_pretrain, 'iter.txt'),
os.path.join(opt.checkpoints_dir, opt.name, 'iter.txt'))
shutil.copyfile(os.path.join(opt.checkpoints_dir, opt.load_pretrain, 'M1', 'latest.pth'),
os.path.join(opt.checkpoints_dir, opt.name, 'M1', 'latest.pth'))
shutil.copyfile(os.path.join(opt.checkpoints_dir, opt.load_pretrain, 'E', 'latest.pth'),
os.path.join(opt.checkpoints_dir, opt.name, 'E', 'latest.pth'))
shutil.copyfile(os.path.join(opt.checkpoints_dir, opt.load_pretrain, 'M2', 'latest.pth'),
os.path.join(opt.checkpoints_dir, opt.name, 'M2', 'latest.pth'))
shutil.copyfile(os.path.join(opt.checkpoints_dir, opt.load_pretrain, 'D', 'latest.pth'),
os.path.join(opt.checkpoints_dir, opt.name, 'D', 'latest.pth'))
if not os.path.exists(os.path.join(save_path, 'opt.txt')):
file_name = os.path.join(save_path, 'opt.txt')
with open(file_name, 'wt') as opt_file:
opt_file.write('------------ Options -------------\n')
for k, v in sorted(vars(opt).items()):
opt_file.write('%s: %s\n' % (str(k), str(v)))
opt_file.write('-------------- End ----------------\n')
iter_path = os.path.join(opt.checkpoints_dir, opt.name, 'iter.txt')
if opt.continue_train:
try:
start_epoch, epoch_iter = np.loadtxt(iter_path, delimiter=',', dtype=int)
except:
start_epoch, epoch_iter = 1, 0
print('Resuming from epoch %d at iteration %d' % (start_epoch, epoch_iter))
else:
start_epoch, epoch_iter = 1, 0
sample_path = os.path.join(opt.checkpoints_dir, opt.name, 'samples')
if not os.path.exists(sample_path):
os.mkdir(sample_path)
model = create_model(opt)
if opt.debug:
print('Model instance iter: {}.'.format(model.module.iter))
visualizer = Visualizer(opt)
trainer = Trainer(train_loader, model, opt, start_epoch, epoch_iter, visualizer)
for epoch_idx in range(start_epoch, opt.niter + opt.niter_decay + 1):
if opt.isTrain:
epoch_start_time = time.time()
# train for one epoch
if opt.fp16:
with autocast():
trainer.train(epoch_idx)
else:
trainer.train(epoch_idx)
epoch_time = time.time() - epoch_start_time
print('End of epoch {}/{} \t Total time: {:.3f}'.format(epoch_idx, opt.niter + opt.niter_decay, epoch_time))
# save model for this epoch
if epoch_idx % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' % (epoch_idx, trainer.total_iter))
model.module.save('latest')
model.module.save('{}_iter'.format(trainer.total_iter))
np.savetxt(iter_path, (epoch_idx + 1, 0), delimiter=',', fmt='%d')
# lr decay
if epoch_idx >= opt.niter:
model.module.update_lr()
if opt.verbose:
print('Learning rate has been changed to {}.'.format(model.module.old_lr))
# test model
test(opt, model, test_loader, epoch_idx, trainer.total_iter, visualizer)