forked from lucasrodes/kPCA-denoising-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
example3.py
208 lines (188 loc) · 9.89 KB
/
example3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import matplotlib.pyplot as plt
import numpy as np
import skimage
from sklearn.datasets import fetch_mldata
from sklearn.decomposition import PCA
from our_kpca import kPCA
# Fetch dataset and display info
usps = fetch_mldata('USPS')
print('Dataset info:', usps.DESCR)
print('Datapoints: {0}\nFeatures: {1}'.format(*usps.data.shape))
# Add a secondary dataset noisy images,
# noise is gaussian with 0 mean and std=0.5,
# not sure about the 'speckle' noise in the paper.
# Also set the class labels to the number they represent
usps.update({
'data': - usps.data,
'gaussian': - skimage.util.random_noise(usps.data, mode='gaussian', var=0.5 ** 2, seed=123),
's&p': - skimage.util.random_noise(usps.data, mode='s&p', amount=0.4, seed=123),
'target': usps.target - 1
})
def pca_denoising(training_data, test_data, n_components):
"Performs linear PCA denoising using sklearn"
pca = PCA(n_components)
pca.fit(training_data)
low_dim_representation = pca.transform(test_data)
return pca.inverse_transform(low_dim_representation)
if __name__ == '__main__':
for noise_model in ['gaussian', 's&p']:
# Show the first occurrence of each number, with and without noise
'''
vals, locs = np.unique(usps.target, return_index=True)
for number, index in zip(vals, locs):
plt.subplot(5, 4, 2 * number + 1)
image = np.array(usps.data[index]).reshape((16, 16))
plt.imshow(image, cmap='gray', interpolation='none')
plt.title('Idx: {}'.format(index))
plt.axis('off')
plt.subplot(5, 4, 2 * number + 2)
image = np.array(usps[noise_model][index]).reshape((16, 16))
plt.imshow(image, cmap='gray', interpolation='none')
plt.axis('off')
plt.suptitle('First occurrence of each number, with and without noise', fontsize=17)
plt.tight_layout()
plt.show()
'''
# For each class, take 300 noiseless samples for training and 10 noisy for testing
# Show the image before and after denoising for the first 10 test samples
'''
for number in range(10):
idx = np.random.choice(np.where(usps.target == number)[0], size=310, replace=False)
train_idx, test_idx = idx[:300], idx[-10:]
denoised = kPCA(usps.data[train_idx], usps[noise_model][test_idx]).obtain_preimages(20, 0.5)
for i in range(10):
plt.subplot(5, 4, 2 * i + 1)
plt.imshow(usps[noise_model][test_idx[i]].reshape((16, 16)), cmap='gray', interpolation='none')
plt.title('Idx: {}'.format(test_idx[i]))
plt.axis('off')
plt.subplot(5, 4, 2 * i + 2)
plt.imshow(denoised[i].reshape((16, 16)), cmap='gray', interpolation='none')
plt.axis('off')
plt.suptitle('Trained only on {}, first 10 denoised samples'.format(number), fontsize=17)
plt.tight_layout()
plt.show()
'''
# For each class, take 300 noiseless samples for training and 1 noisy for testing.
# Put all the samples together in a 10*300 training dataset and 10*1 testing dataset.
# Show the image before and after denoising for the first occurrence of each class.
'''
train_idx = []
test_idx = []
for number in range(10):
idx = np.random.choice(np.where(usps.target == number)[0], size=301, replace=False).tolist()
train_idx += idx[:300]
test_idx += idx[-1:]
denoised = kPCA(usps.data[train_idx], usps[noise_model][test_idx]).obtain_preimages(20, 0.5)
_, locs = np.unique(usps.target[test_idx], return_index=True)
for plt_i, data_i in enumerate(locs):
plt.subplot(5, 4, 2 * plt_i + 1)
plt.imshow(usps[noise_model][test_idx[data_i]].reshape((16, 16)), cmap='gray', interpolation='none')
plt.title('Idx: {}'.format(test_idx[data_i]))
plt.axis('off')
plt.subplot(5, 4, 2 * plt_i + 2)
plt.imshow(denoised[data_i].reshape((16, 16)), cmap='gray', interpolation='none')
plt.axis('off')
plt.suptitle('Trained on all classes, first denoised sample of every class', fontsize=17)
plt.tight_layout()
plt.show()
'''
# Consider class 3, take 300 noiseless samples for training and 1 noisy for testing
# Show the denoising process when run with a variable number of features
'''
idx = np.random.choice(np.where(usps.target == 3)[0], size=301, replace=False)
train_idx, test_idx = idx[:300], idx[-1:]
for i, n_features in enumerate(range(2, 21, 2)):
denoised = kPCA(usps.data[train_idx], usps[noise_model][test_idx]).obtain_preimages(n_features, 0.5)
plt.subplot(5, 4, 2 * i + 1)
plt.imshow(usps[noise_model][test_idx[0]].reshape((16, 16)), cmap='gray', interpolation='none')
plt.title('Feat: {}'.format(n_features))
plt.axis('off')
plt.subplot(5, 4, 2 * i + 2)
plt.imshow(denoised[0].reshape((16, 16)), cmap='gray', interpolation='none')
plt.axis('off')
plt.suptitle('Trained only on 3, first denoised sample for different number of features'.format(number),
fontsize=17)
plt.tight_layout()
plt.show()
'''
# For each class, take 300 noiseless samples for training and 1 noisy for testing.
# Put all the samples together in a 10*300 training dataset and 10*1 testing dataset.
# Show the denoising process when run with a variable number of features.
# Examples are made on class 3.
'''
train_idx = []
test_idx = []
for number in range(10):
idx = np.random.choice(np.where(usps.target == number)[0], size=301, replace=False).tolist()
train_idx += idx[:300]
test_idx += idx[-1:]
for i, n_features in enumerate(range(2, 21, 2)):
denoised = kPCA(usps.data[train_idx], usps[noise_model][test_idx]).obtain_preimages(n_features, 0.5)
plt.subplot(5, 4, 2 * i + 1)
plt.imshow(usps[noise_model][test_idx[1 * 3]].reshape((16, 16)), cmap='gray', interpolation='none')
plt.title('Feat: {}'.format(n_features))
plt.axis('off')
plt.subplot(5, 4, 2 * i + 2)
plt.imshow(denoised[1 * 3].reshape((16, 16)), cmap='gray', interpolation='none')
plt.axis('off')
plt.suptitle('Trained on all classes, first denoised sample for different number of features'.format(number),
fontsize=17)
plt.tight_layout()
plt.show()
'''
# For each class, take 300 noiseless samples for training and 1 noisy for testing.
# Put all the samples together in a 10*300 training dataset and 10*1 testing dataset.
# Show the denoising process when run with a variable number of features.
# Also show a comparison against a linear PCA.
'''
train_idx = []
test_idx = []
plt.figure(figsize=(10, 10))
for number in range(10):
idx = np.random.choice(np.where(usps.target == number)[0], size=301, replace=False).tolist()
train_idx += idx[:300]
test_idx += idx[-1:]
plt.subplot(12, 10, number + 1)
plt.imshow(usps.data[test_idx[number]].reshape((16, 16)), cmap='gray', interpolation='none')
plt.axis('off')
plt.subplot(12, 10, 10 + number + 1)
plt.imshow(usps[noise_model][test_idx[number]].reshape((16, 16)), cmap='gray', interpolation='none')
plt.axis('off')
for i, n_features in enumerate([1, 4, 16, 64, 256]):
denoised = kPCA(usps.data[train_idx], usps[noise_model][test_idx]).obtain_preimages(n_features, 0.5)
denoised_linear = pca_denoising(usps.data[train_idx], usps[noise_model][test_idx], n_features)
for j, img in enumerate(denoised):
plt.subplot(12, 10, 10 * (i + 5 + 2) + j + 1)
plt.imshow(img.reshape((16, 16)), cmap='gray', interpolation='none')
plt.axis('off')
for j, img in enumerate(denoised_linear):
plt.subplot(12, 10, 10 * (i + 2) + j + 1)
plt.imshow(img.reshape((16, 16)), cmap='gray', interpolation='none')
plt.axis('off')
plt.subplots_adjust(wspace=0.03, hspace=0.03)
plt.show()
'''
# For each class, take 300 noiseless samples.
# Put all the samples together in a 10*300 training dataset.
# Also take one noiseless sample of '3' for reconstruction.
# Show the reconstruction process when run with a variable number of features, for both linear and kernel PCA
train_idx = []
for number in range(10):
idx = np.random.choice(np.where(usps.target == number)[0], size=300, replace=False).tolist()
train_idx += idx
test_idx = np.where(usps.target == 3)[0][0]
for n_features in range(1, 21):
denoised = kPCA(usps.data[train_idx], usps.data[test_idx].reshape(1, -1), False).obtain_preimages(n_features, 0.5)
denoised_linear = pca_denoising(usps.data[train_idx], usps.data[test_idx].reshape(1, -1), n_features)
plt.subplot(6, 7, n_features + 7 * ((n_features - 1) // 7))
plt.imshow(denoised.reshape((16, 16)), cmap='gray', interpolation='none')
plt.title('{1:.2f} [K{0}] '.format(n_features, np.linalg.norm(denoised - usps.data[test_idx])))
plt.axis('off')
plt.subplot(6, 7, n_features + 7 * ((n_features - 1) // 7) + 7)
plt.imshow(denoised_linear.reshape((16, 16)), cmap='gray', interpolation='none')
plt.title('{1:.2f} [L{0}] '.format(n_features, np.linalg.norm(denoised_linear - usps.data[test_idx])))
plt.axis('off')
plt.subplot(6, 7, 42)
plt.imshow(usps.data[test_idx].reshape((16, 16)), cmap='gray', interpolation='none')
plt.axis('off')
plt.show()