forked from lucasrodes/kPCA-denoising-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
example2.py
58 lines (53 loc) · 1.85 KB
/
example2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from sklearn.decomposition import PCA
from our_kpca import kPCA
from princurves import fit_curve
import matplotlib.pyplot as plt
import numpy as np
from our_kpca import kPCA
import data_example2 as data
# Enable this to use LaTeX fonts in the plot labeling
plt.rc('text', usetex=True)
plt.rc('font', family='serif')
def plot(methods, X, Y, line, rowspan):
"Plots all results in the input list as a series of subplots"
n_methods = len(methods)
i = 0
plt.hold(True)
handles = []
for denoised, name in methods:
plt.subplot2grid((3, 4), (line, i), rowspan=rowspan)
handle1, = plt.plot(X, Y, '.', color="0.8")
plt.title(name)
handle2, = plt.plot(denoised[:,0], denoised[:,1], 'k.')
i += 1
handles.append(handle1)
handles.append(handle2)
return handles
def pca_denoising(data):
"Performs linear PCA denoising using sklearn"
pca = PCA(n_components=1)
low_dim_representation = pca.fit_transform(data)
return pca.inverse_transform(low_dim_representation)
# To add a new method, simply add it to both methods list
# Curves
X, Y = data.get_curves(noise='normal', scale=0.2)
noisy_data = np.array([X, Y]).T
methods = [
(kPCA(noisy_data).obtain_preimages(4, 0.5), 'Kernel PCA'),
(fit_curve(noisy_data), 'Principal Curves'),
(pca_denoising(noisy_data), 'Linear PCA')
]
plot(methods, X, Y, 0, 1)
# Square
X, Y = data.get_square(noise='normal', scale=0.2)
noisy_data = np.array([X, Y]).T
methods = [
(kPCA(noisy_data).obtain_preimages(4, 0.6), 'Kernel PCA'),
(fit_curve(noisy_data), 'Principal Curves'),
(fit_curve(noisy_data, circle=True), 'Principal Curves (from circle)'),
(pca_denoising(noisy_data), 'Linear PCA')
]
handles = plot(methods, X, Y, 1, 2)
plt.figlegend(handles[:2], ['Original data', 'Denoised data'],
loc='upper right', bbox_to_anchor=(0.92, 0.85))
plt.show()