-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultiple_instance_learning.py
178 lines (140 loc) · 7.6 KB
/
multiple_instance_learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import argparse
import os
import shutil
import sys
import time
from os.path import join
from typing import Tuple
import toml
import torch
import torch.optim as optim
from torch import nn
from torch.nn import CrossEntropyLoss, Linear
from torch.optim import lr_scheduler
from torchvision import models
from tqdm import tqdm
from include.nn_datasets import get_validation_pipeline, get_training_pipeline, \
RetinaBagDataset, get_dataset
from include.nn_models import BagNet
from include.nn_report import Reporting
from include.nn_metrics import Score, Scores
RES_PATH = ''
def run(base_path, model_path, num_epochs, custom_hp=None, custom_writer=None):
setup_log(base_path)
config = toml.load('config_mil.toml')
hp = custom_hp if custom_hp else config['hp']
hp['pretraining'] = True if model_path else False
print('--------Configuration---------- \n ', config)
shutil.copy2('config_mil.toml', RES_PATH)
device = torch.device(config['gpu_name'] if torch.cuda.is_available() else "cpu")
print(f'Working on {base_path}!')
print(f'using device {device}')
aug_pipeline_train = get_training_pipeline(0, hp['crop_size'], mode='mil', strength=hp['aug_strength'],
graham=hp['graham'])
aug_pipeline_val = get_validation_pipeline(0, hp['crop_size'], mode='mil')
loaders = get_dataset(RetinaBagDataset, base_path, hp, aug_pipeline_train, aug_pipeline_val, config['num_workers'])
net = prepare_model(model_path, hp, device)
optimizer_ft = optim.Adam([{'params': net.feature_extractor_part1.parameters(), 'lr': 1e-5},
{'params': net.feature_extractor_part2.parameters()}, # , 'lr': 1e-5},
{'params': net.attention.parameters()},
{'params': net.att_v.parameters()},
{'params': net.att_u.parameters()},
{'params': net.att_weights.parameters()},
{'params': net.classifier.parameters()}], lr=hp['learning_rate'],
weight_decay=hp['weight_decay'])
criterion = CrossEntropyLoss()
plateau_scheduler = lr_scheduler.ReduceLROnPlateau(optimizer_ft, mode='min', factor=0.1, patience=12, verbose=True)
desc = f'_mil_pad_{str("_".join([k[0] + str(hp) for k, hp in hp.items()]))}_{os.path.basename(base_path)}'
writer = Reporting(writer_desc=desc, log_dir=RES_PATH) if custom_writer is None else custom_writer
best_model, perf_metric = train_model(net, criterion, optimizer_ft, plateau_scheduler, loaders, device,
writer, num_epochs=num_epochs)
return perf_metric
def setup_log(data_path):
global RES_PATH
RES_PATH = os.path.join(RES_PATH, f'{time.strftime("%Y%m%d_%H%M")}_{os.path.basename(data_path)}_PAD/')
os.mkdir(RES_PATH)
def prepare_model(model_path, hp, device):
net = None
if hp['network'] == 'AlexNet':
net = models.alexnet(pretrained=True)
net.classifier[-1] = Linear(net.classifier[-1].in_features, 2)
if hp['pretraining'] and hp['model_loading'] == 'features':
net.load_state_dict(torch.load(model_path, map_location=device))
print('Loaded stump: ', len(net.features))
net = BagNet(net, num_attention_neurons=hp['attention_neurons'], attention_strategy=hp['attention'],
pooling_strategy=hp['pooling'], stump_type=hp['network'])
if hp['pretraining'] and hp['model_loading'] == 'full':
net.load_state_dict(torch.load(model_path, map_location=device), strict=False)
net.classifier = nn.Sequential(nn.Linear(net.L * net.K, 1), nn.Sigmoid())
net.attention = nn.Sequential(nn.Linear(net.L, net.D), nn.Tanh(), nn.Linear(net.D, net.K))
if hp['pretraining'] and hp['model_loading'] == 'extract':
net.load_state_dict(torch.load(model_path, map_location=device), strict=False)
net = BagNet(net.stump, num_attention_neurons=hp['attention_neurons'], attention_strategy=hp['attention'],
pooling_strategy=hp['pooling'], stump_type=hp['network'])
print(f'Model info: {net.__class__.__name__}, #frozen layer: {hp["freeze"]}')
return net.to(device)
def train_model(model, criterion, optimizer, scheduler, loaders, device, writer, num_epochs=50):
since = time.time()
best_f1_val = -1
model.to(device)
val_scores, val_eye_scores = {}, {}
perf_metrics = None
for epoch in range(num_epochs):
print(f'{time.strftime("%H:%M:%S")}> Epoch {epoch}/{num_epochs}')
print('-' * 10)
running_loss = 0.0
metrics = Scores()
# Iterate over data.
for i, batch in tqdm(enumerate(loaders[0]), total=len(loaders[0]), desc=f'Epoch {epoch}'):
inputs = batch['frames'].to(device, dtype=torch.float)
labels = batch['label'].to(device)
model.train()
optimizer.zero_grad()
loss, _, _ = model.calculate_objective(inputs, labels)
error, pred = model.calculate_classification_error(inputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
metrics.add(pred, labels)
train_scores = metrics.calc_scores(as_dict=True)
train_scores['loss'] = running_loss / len(loaders[0].dataset)
writer.write_scores('train', train_scores, epoch)
val_loss, perf_metrics = validate(model, criterion, loaders[1], device, writer, epoch)
val_scores = perf_metrics.calc_scores(as_dict=True)
best_f1_val = val_scores['f1'] if val_scores['f1'] > best_f1_val else best_f1_val
scheduler.step(val_loss)
time_elapsed = time.time() - since
print(f'{time.strftime("%H:%M:%S")}> Training complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s')
torch.save(model.state_dict(), join(RES_PATH, f'model_pad_mil.pth'))
return model, perf_metrics
def validate(model, criterion, loader, device, writer, cur_epoch):
model.eval()
running_loss = 0.0
perf_metrics = Scores()
for i, batch in tqdm(enumerate(loader), total=len(loader), desc='Validation'):
inputs = batch['frames'].to(device, dtype=torch.float)
labels = batch['label'].to(device)
names = batch['name'] # pid for eye_id without L/R
# positions = batch['pos']
with torch.no_grad():
loss, attention_weights, probs = model.calculate_objective(inputs, labels)
error, preds = model.calculate_classification_error(inputs, labels)
running_loss += loss.item()
perf_metrics.add(preds, labels, probs=probs, tags=names, attention=attention_weights)
scores = perf_metrics.calc_scores(as_dict=True)
scores['loss'] = running_loss / len(loader.dataset)
scores_eye = perf_metrics.calc_scores_eye(as_dict=True, ratio=0.5)
writer.write_scores('eye_val', scores_eye, cur_epoch)
writer.write_scores('val', scores, cur_epoch)
perf_metrics.persist_scores(RES_PATH, cur_epoch, scores)
return running_loss / len(loader.dataset), perf_metrics
if __name__ == '__main__':
print(f'INFO> Using python version {sys.version_info}')
print(f'INFO> Using torch with GPU {torch.cuda.is_available()}')
parser = argparse.ArgumentParser(description='Multiple instance learning cause once is not enough')
parser.add_argument('--data', help='Path for training data', type=str)
parser.add_argument('--epochs', help='Number of training epochs', type=int, default=50)
parser.add_argument('--model', help='Path to pretrained model', type=str, default=None)
args = parser.parse_args()
run(args.data, args.model, args.epochs)
sys.exit(0)