-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlocus_prism.py
executable file
·319 lines (247 loc) · 14.8 KB
/
locus_prism.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
#!/usr/bin/env python2.7
import itertools,os,re,argparse,string,sys
#sys.path.append('/usr/local/agr-scripts')
#from prbdf import Distribution , build, from_tab_delimited_file, bin_discrete_value
from data_prism import prism, build, from_tab_delimited_file, bin_discrete_value
def my_locus_provider(filename, *xargs):
"""
transform the tab-delimited stream, to only yield the records that relates either to a hit
or "no hit" . Note that sometimes this format reports multiple hits to the same target
- we only want the top hit - this is provided by the next method
# BLASTN 2.6.0+
# Query: seq_20382 count=638
# Database: /bifo/scratch/datacache/ncbi/indexes/blast/capra_hircus_ncbi_PRJNA290100.fasta
# 0 hits found
# BLAST processed 1 queries
# BLASTN 2.6.0+
# Query: seq_21074 count=204
# Database: /bifo/scratch/datacache/ncbi/indexes/blast/capra_hircus_ncbi_PRJNA290100.fasta
# Fields: query acc.ver, subject acc.ver, % identity, alignment length, mismatches, gap opens, q. start, q. end, s. start, s. end, evalue, bit score
# 17 hits found
seq_21074 CM004590.1 100.000 64 0 0 1 64 4028254 4028191 1.14e-25 119
seq_21074 CM004590.1 100.000 64 0 0 1 64 39689322 39689385 1.14e-25 119
seq_21074 CM004590.1 98.438 64 1 0 1 64 402829 402892 5.31e-24 113
seq_21074 CM004590.1 98.438 64 1 0 1 64 3455400 3455337 5.31e-24 113
"""
weighting_method = xargs[0]
raw_tuple_stream = from_tab_delimited_file(filename,*xargs[1:]) # query, hitacc, hstart,hend
database=[None]
tuple_stream = ((item[0], database[0], item[1], item[2],item[3]) for item in raw_tuple_stream)
atuple = tuple_stream.next()
query = ""
while True:
#print "DEBUG", atuple
database_match=re.search("^#\s+Database:\s+(\S+)$",atuple[0].strip())
if database_match is not None:
database[0] = os.path.splitext( os.path.basename(database_match.groups()[0]) )[0]
weight = 1
query_match = re.search("^#\s+Query:\s+(.*)$",atuple[0].strip())
if query_match is not None:
query = query_match.groups()[0]
if re.search(" 0 hits",atuple[0],re.IGNORECASE) is not None:
if weighting_method == "tag_count":
weighting_match = re.search("count=(\d*\.*\d*)\s*$", query)
weight = float(weighting_match.groups()[0])
yield ((query,database[0],'No hits'),weight)
elif atuple[3:] != (None, None):
if weighting_method == "tag_count":
weighting_match = re.search("count=(\d*\.*\d*)\s*$", query)
weight = float(weighting_match.groups()[0])
yield ((query,database[0],atuple[2]), weight)
else:
pass
atuple = tuple_stream.next()
def my_description_provider(filename, *xargs):
"""
transform the tab-delimited stream, to only yield the records that relates either to a hit
or "no hit" . Note that sometimes this format reports multiple hits to the same target
- we only want the top hit - this is provided by the next method
# BLASTN 2.6.0+
# Query: seq_20382 count=638
# Database: /bifo/scratch/datacache/ncbi/indexes/blast/capra_hircus_ncbi_PRJNA290100.fasta
# 0 hits found
# BLAST processed 1 queries
# BLASTN 2.6.0+
# Query: seq_21074 count=204
# Database: /bifo/scratch/datacache/ncbi/indexes/blast/capra_hircus_ncbi_PRJNA290100.fasta
# Fields: query acc.ver, subject acc.ver, % identity, alignment length, mismatches, gap opens, q. start, q. end, s. start, s. end, evalue, bit score
# 17 hits found
seq_21074 CM004590.1 100.000 64 0 0 1 64 4028254 4028191 1.14e-25 119
seq_21074 CM004590.1 100.000 64 0 0 1 64 39689322 39689385 1.14e-25 119
seq_21074 CM004590.1 98.438 64 1 0 1 64 402829 402892 5.31e-24 113
seq_21074 CM004590.1 98.438 64 1 0 1 64 3455400 3455337 5.31e-24 113
"""
weighting_method = xargs[0]
raw_tuple_stream = from_tab_delimited_file(filename,*xargs[1:]) # query, description
database=[None]
tuple_stream = ((item[0], database[0], item[1]) for item in raw_tuple_stream)
atuple = tuple_stream.next()
query = ""
while True:
#print "DEBUG1", atuple
database_match=re.search("^#\s+Database:\s+(\S+)$",atuple[0].strip())
if database_match is not None:
database[0] = os.path.splitext( os.path.basename(database_match.groups()[0]) )[0]
weight = 1
query_match = re.search("^#\s+Query:\s+(.*)$",atuple[0].strip())
if query_match is not None:
query = query_match.groups()[0]
if re.search(" 0 hits",atuple[0],re.IGNORECASE) is not None:
if weighting_method == "tag_count":
weighting_match = re.search("count=(\d*\.*\d*)\s*$", query)
weight = float(weighting_match.groups()[0])
yield ((query,database[0],'No hits'),weight)
elif atuple[0] == re.split("\s+",query)[0]:
if weighting_method == "tag_count":
weighting_match = re.search("count=(\d*\.*\d*)\s*$", query)
weight = float(weighting_match.groups()[0])
#print "DEBUG2", ((query,database[0],atuple[2]), weight)
# e.g.
#(('seq_91347 count=1.001001', 'nt', 'PREDICTED: Salmo salar uncharacterized LOC106591627 (LOC106591627), ncRNA'), 1.001001)
yield ((query,database[0],atuple[2]), weight)
else:
pass
atuple = tuple_stream.next()
def my_top_locus_provider(filename, *xargs):
"""
for each file stream which may contain multiple hits, and yields just the top hit in each group
"""
groups = itertools.groupby(my_locus_provider(filename, *xargs), lambda x:x[0][0])
top_hits = (group.next() for (key, group) in groups)
return top_hits
def my_top_description_provider(filename, *xargs):
"""
for each file stream which may contain multiple hits, and yields just the top hit in each group
"""
groups = itertools.groupby(my_description_provider(filename, *xargs), lambda x:x[0][0])
top_hits = (group.next() for (key, group) in groups)
return top_hits
def my_locus_spectrum_value_provider(interval_weight, *xargs):
"""
this takes the items from top hit provider - e.g.
(('seq_25449', 'filename', 'chrn'), 52)
and transforms to e.g.
((52, 'filename', 'chrn'),)
"""
#print interval_weight
return ((interval_weight[1],interval_weight[0][1],interval_weight[0][2]),)
def my_description_spectrum_value_provider(interval_weight, *xargs):
"""
this takes the items from top hit provider - e.g.
(('seq_25449', 'filename', 'description'), 52)
and transforms to e.g.
((52, 'filename', 'description'),)
"""
#print "DEBUG3", interval_weight
return ((interval_weight[1],interval_weight[0][1],interval_weight[0][2]),)
def build_locus_distribution(datafiles, weighting_method = None, locus_type="locus"):
distob = prism(datafiles, 1)
#distob.DEBUG = True
if locus_type == "locus":
distob.file_to_stream_func = my_top_locus_provider
distob.file_to_stream_func_xargs = [weighting_method,0,1,8,9] # i.e. pick out first field (query) then hit accession and subject start and end
distob.interval_locator_funcs = [bin_discrete_value, bin_discrete_value]
distob.spectrum_value_provider_func = my_locus_spectrum_value_provider
elif locus_type=="description":
distob.file_to_stream_func = my_top_description_provider
distob.file_to_stream_func_xargs = [weighting_method,0,8] # i.e. pick out first field (query) then hit accession and subject start and end
distob.interval_locator_funcs = [bin_discrete_value, bin_discrete_value]
distob.spectrum_value_provider_func = my_description_spectrum_value_provider
distdata = build(distob,"singlethread")
print "saving distribution to %s.locus.pickle"%os.path.commonprefix(datafiles)
distob.save("%s.locus.pickle"%os.path.commonprefix(datafiles))
print """
seq count %d
locus count %d
"""%(distob.total_spectrum_value, len(distob.spectrum.keys()))
distob.list()
return distdata
def locus_cmp(x,y):
ord=cmp(x[0],y[0])
if ord == 0:
ord = cmp(x[1], y[1])
return ord
def get_sample_locus_distribution(sample_locus_summaries, measure,rownames):
sample_locus_lists = [ prism.load(sample_locus_summary).get_spectrum().keys() for sample_locus_summary in sample_locus_summaries ]
all_locusa = set( reduce(lambda x,y:x+y, sample_locus_lists))
all_locusa_list = list(all_locusa)
all_locusa_list.sort(locus_cmp)
#print all_locusa_list
if measure == "frequency":
if not rownames:
sample_locus_distributions = [[re.sub("'|#","","%s\t%s"%item) for item in all_locusa_list]] + [ prism.load(sample_locus_summary).get_raw_projection(all_locusa_list) for sample_locus_summary in sample_locus_summaries]
else:
sample_locus_distributions = [[re.sub("'|#","","%s_%s"%item) for item in all_locusa_list]] + [ prism.load(sample_locus_summary).get_raw_projection(all_locusa_list) for sample_locus_summary in sample_locus_summaries]
else:
if not rownames:
sample_locus_distributions = [[re.sub("'|#","","%s\t%s"%item) for item in all_locusa_list]] + [ prism.load(sample_locus_summary).get_unsigned_information_projection(all_locusa_list) for sample_locus_summary in sample_locus_summaries]
else:
sample_locus_distributions = [[re.sub("'|#","","%s_%s"%item) for item in all_locusa_list]] + [ prism.load(sample_locus_summary).get_unsigned_information_projection(all_locusa_list) for sample_locus_summary in sample_locus_summaries]
fd_iter = itertools.izip(*sample_locus_distributions)
if not rownames:
heading = itertools.izip(*[["genome\tlocus"]]+[[re.split("\.",os.path.basename(path.strip()))[0]] for path in sample_locus_summaries])
else:
heading = itertools.izip(*[["genome_locus"]]+[[re.split("\.",os.path.basename(path.strip()))[0]] for path in sample_locus_summaries])
#print heading
fd_iter = itertools.chain(heading, fd_iter)
for record in fd_iter:
print string.join([str(item) for item in record],"\t")
def debug(options):
#test_iter = my_locus_provider(options["filenames"][0], *[None,0,7,6])
test_iter = my_top_locus_provider(options["filenames"][0], *["tag_count",0,7,6])
for item in test_iter:
print item
#print my_locus_spectrum_value_provider(item, *[])
class outer_list(list):
def __getitem__(self, key):
if key >= self.__len__():
return None
else:
return super(outer_list,self).__getitem__(key)
def get_options():
description = """
"""
long_description = """
example :
for file in /dataset/gseq_processing/scratch/gbs/180419_D00390_0357_ACCHG7ANXX/SQ0673.all.PstI-MspI.PstI-MspI/genome_alignment_blast/*.gz;
do ./locus_prism.py --weighting_method tag_count $file >> /dataset/gseq_processing/scratch/gbs/180419_D00390_0357_ACCHG7ANXX/SQ0673.all.PstI-MspI.PstI-MspI/annotation/otsh_align.summary.txt;
done
./locus_prism.py --summary_type summary_table --measure frequency --rownames /dataset/gseq_processing/scratch/gbs/180419_D00390_0357_ACCHG7ANXX/SQ0673.all.PstI-MspI.PstI-MspI/genome_alignment_blast/*.pickle
./locus_prism.py --summary_type summary_table --measure information --rownames /dataset/gseq_processing/scratch/gbs/180419_D00390_0357_ACCHG7ANXX/SQ0673.all.PstI-MspI.PstI-MspI/genome_alignment_blast/*.pickle
for file in /dataset/gseq_processing/scratch/gbs/180824_D00390_0394_BCCPYFANXX_old_KGD/SQ0673.all.PstI-MspI.PstI-MspI/blast/*.gz;
do ./locus_prism.py --weighting_method tag_count --locus_type description $file >> /dataset/gseq_processing/scratch/gbs/180824_D00390_0394_BCCPYFANXX_old_KGD/SQ0673.all.PstI-MspI.PstI-MspI/annotation/nt_gene.summary.txt;
done
./locus_prism.py --summary_type summary_table --measure frequency --rownames /dataset/gseq_processing/scratch/gbs/180824_D00390_0394_BCCPYFANXX_old_KGD/SQ0673.all.PstI-MspI.PstI-MspI/blast/*.pickle > /dataset/gseq_processing/scratch/gbs/180824_D00390_0394_BCCPYFANXX_old_KGD/SQ0673.all.PstI-MspI.PstI-MspI/annotation/nt_gene_freq.txt
./locus_prism.py --summary_type summary_table --measure information --rownames /dataset/gseq_processing/scratch/gbs/180824_D00390_0394_BCCPYFANXX_old_KGD/SQ0673.all.PstI-MspI.PstI-MspI/blast/*.pickle > > /dataset/gseq_processing/scratch/gbs/180824_D00390_0394_BCCPYFANXX_old_KGD/SQ0673.all.PstI-MspI.PstI-MspI/annotation/nt_gene_info.txt
optionally, the query line can specify a weighting to be used as a count instead of 1 - e.g.
# Query: seq_26674 count=16
(this is used when blasting queries such as unique tags)
"""
parser = argparse.ArgumentParser(description=description, epilog=long_description, formatter_class = argparse.RawDescriptionHelpFormatter)
parser.add_argument('filenames', type=str, nargs="*",help='input files of blast hits for a given subject (optionally compressed with gzip)')
parser.add_argument('--summary_type', dest='summary_type', default="sample_summaries", \
choices=["sample_summaries", "summary_table"],help="summary type (default: sample_summaries")
parser.add_argument('--measure', dest='measure', default="frequency", \
choices=["frequency", "information"],help="measure (default: frequency")
parser.add_argument('--rownames' , dest='rownames', default=False,action='store_true', help="combine genome and locus fields to make a rowname")
parser.add_argument('--weighting_method' , dest='weighting_method', default=None,choices=["tag_count"],help="weighting method")
parser.add_argument('--locus_type' , dest='locus_type', default="locus" ,choices=["locus", "description"],help="locus type")
args = vars(parser.parse_args())
return args
def main():
args=get_options()
#test = my_top_locus_provider(filename, 0,7,6)
#test = my_locus_provider(filename, 0,7,6)
#for record in test:
# print record
#return
#debug(args)
if args["summary_type"] == "sample_summaries" :
locus_dist = build_locus_distribution(args['filenames'], weighting_method = args["weighting_method"], locus_type=args["locus_type"])
#write_summaries(filename,locus_dist)
elif args["summary_type"] == "summary_table" :
#print "summarising %s"%str(args["filename"])
get_sample_locus_distribution(args["filenames"], args["measure"], args["rownames"])
return
if __name__ == "__main__":
main()