Skip to content

Latest commit

 

History

History
38 lines (31 loc) · 1.29 KB

README.md

File metadata and controls

38 lines (31 loc) · 1.29 KB

Tree Wasserstein distance with weight training

This is the demo code for the paper entitled Approximating 1-Wasserstein Distance with Trees.

Note that we used the QuadTree and clustertree implementations of Fixed Support Tree-Sliced Wasserstein Barycenter.

Requirements

Install requirements.

sudo pip install -r requirement.txt

Run

Run example.py

python example.py

Citation

@article{
yamada2022approximating,
title={Approximating 1-Wasserstein Distance with Trees},
author={Makoto Yamada and Yuki Takezawa and Ryoma Sato and Han Bao and Zornitsa Kozareva and Sujith Ravi},
journal={Transactions on Machine Learning Research},
year={2022},
url={https://openreview.net/forum?id=Ig82l87ZVU},
note={}
}

Related Github projects

Contributors

Name : Makoto Yamada (Okinawa Institute of Science and Technology / Kyoto University) and Yuki Takezawa (Kyoto University)

E-mail : makoto (dot) yamada (at) oist.jp