diff --git a/2016-welf-meSPIM/CollagenMount.dwg b/2016-welf-meSPIM/CollagenMount.dwg
new file mode 100644
index 0000000..c259071
Binary files /dev/null and b/2016-welf-meSPIM/CollagenMount.dwg differ
diff --git a/2016-welf-meSPIM/CollagenMount.ipt b/2016-welf-meSPIM/CollagenMount.ipt
new file mode 100644
index 0000000..b58cba1
Binary files /dev/null and b/2016-welf-meSPIM/CollagenMount.ipt differ
diff --git a/2016-welf-meSPIM/CollagenMount.jpg b/2016-welf-meSPIM/CollagenMount.jpg
new file mode 100644
index 0000000..93dcec0
Binary files /dev/null and b/2016-welf-meSPIM/CollagenMount.jpg differ
diff --git a/2016-welf-meSPIM/CollagenMount.pdf b/2016-welf-meSPIM/CollagenMount.pdf
new file mode 100644
index 0000000..de64301
Binary files /dev/null and b/2016-welf-meSPIM/CollagenMount.pdf differ
diff --git a/2019-chang-field-synthesis/FieldSynthesis/FieldSynthesis/FieldSynthesisInteractive.m b/2019-chang-field-synthesis/FieldSynthesis/FieldSynthesis/FieldSynthesisInteractive.m
new file mode 100644
index 0000000..e115834
--- /dev/null
+++ b/2019-chang-field-synthesis/FieldSynthesis/FieldSynthesis/FieldSynthesisInteractive.m
@@ -0,0 +1,212 @@
+function [ hfig ] = FieldSynthesisInteractive( mask, doshift, gaussianLineSigma )
+%FieldSynthesisInteractive Create an interactive line scan demonstration of
+%field synthesis
+%
+% INPUT
+% mask - mask at the pupil, which is the Fourier transform of electrical
+% field at the focal plane
+% doshift - if true, shift the Fourier transform of the mask so the first
+% pixel is in the center of the image rather than the upper left
+% gaussianLineSigma - a double value indicating the sigma of the
+% gaussianLine in pixels
+%
+% OUTPUT
+% hfig - handle for the display figure
+%
+% INTERACTIVE
+% The button in the lower left plays / pauses the movie.
+% The arrow buttons on the slider will move the scan by one column.
+% Clicking on the trough of the slider will move the scan by five columns.
+% The button in the lower right labeled R will reset the cumulative view.
+%
+% EXAMPLE
+% FieldSynthesisInteractive; % default demonstration with cameraman
+% FieldSynthesisInteractive(createAnnulus(),true); % demonstrate a Bessel beam
+%
+% Mark Kittisopikul , August 2018
+% Goldman Lab
+% Northwestern University
+
+% Field Synthesis Demonstration -
+% MATLAB code to demonstrate field synthesis light sheet microscopy
+% Copyright (C) 2018 Reto Fioka,
+% University of Texas Southwestern Medical Center
+% Copyright (C) 2018 Mark Kittisopikul,
+% Northwestern University
+%
+% This program is free software: you can redistribute it and/or modify
+% it under the terms of the GNU General Public License as published by
+% the Free Software Foundation, either version 3 of the License, or
+% (at your option) any later version.
+%
+% This program is distributed in the hope that it will be useful,
+% but WITHOUT ANY WARRANTY; without even the implied warranty of
+% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+% GNU General Public License for more details.
+%
+% You should have received a copy of the GNU General Public License
+% along with this program. If not, see .
+
+if(nargin < 1)
+ mask = fftshift(fft2(double(imread('cameraman.tif'))));
+end
+if(nargin < 2)
+ doshift = false;
+end
+if(nargin < 3)
+ gaussianLineSigma = 0;
+end
+
+%% Setup helper functions
+% Show the intensity (square modulus) using a log transform
+dispLogAbs2PlusOne = @(x) mat2gray(log(abs(x).^2 + 1));
+% Do a 1D smear (dithering)
+smear1D = @(I,dim) repmat(mean(I,dim),circshift([1 size(I,dim)],dim,2));
+% Prepare Image for 1D DFT Display
+disp1DFFT = @(I,dim) dispLogAbs2PlusOne(fftshift(fft(I,[],dim),dim));
+% Prepare Image for 2D DFT Display
+disp2DFFT = @(I) dispLogAbs2PlusOne(fftshift(fft2(I)));
+
+%% Modulate the mask so that the image at the focal plane is centered
+if(doshift)
+ shifter = zeros(size(mask));
+ shifter(ceil(size(mask,1)/2+1),ceil(size(mask,1)/2+1)) = 1;
+ mask = mask .* fft2(shifter);
+end
+
+mask_unshifted = ifftshift(mask);
+startCol = find(any(mask,1),1);
+nCols = find(any(mask,1),1,'last');
+% nCols = size(mask,2);
+F = ifft2(mask_unshifted);
+
+hfig = figure;
+
+% Mask at pupil
+subplot(2,3,1);
+himMask = imshow(dispLogAbs2PlusOne(mask),[]);
+title('Mask: $\log(|\hat{F}|^2+1)$','interpreter','latex');
+hline = patch([1 1],[1 size(mask,2)],0,'EdgeColor','g','EdgeAlpha',0.5);
+
+% Focal plane
+subplot(2,3,2);
+imshow(abs(F).^2,[]);
+title('Intensity: $|F|^2$','interpreter','latex');
+
+% Smeared
+subplot(2,3,3)
+smeared = sum(abs(F).^2,2);
+imshow(repmat(smeared,1,size(F,2)),[]);
+hold on;
+plot(mat2gray(smeared)*(size(mask,2)-1)/2+1,1:size(mask,1),'m')
+title('Dithered Intensity: $\sum_x |F|^2$','interpreter','latex');
+
+% Electric field at focal plane
+subplot(2,3,4);
+hreal = imshow(zeros(size(mask)),[]);
+hreal_title = title('Electric field: $Real\{T_a\}$','interpreter','latex');
+
+% Instaneous intensity at line scan
+subplot(2,3,5);
+hsqmod = imshow(zeros(size(mask)),[]);
+hold on;
+hsqmod_line = plot(zeros(1,size(mask,1)),1:size(mask,1),'m');
+hsqmod_title = title('Scan Intensity: $|T_a|^2$','interpreter','latex');
+
+% Cumulative intensity of line scans
+subplot(2,3,6);
+hcumulative = imshow(zeros(size(mask)),[]);
+hold on;
+hcumulative_line = plot(zeros(1,size(mask,1)),1:size(mask,1),'m');
+title('Cum. Intensity: $\sum^a |T_a|^2$','interpreter','latex');
+
+% 1D delta function, used for line scan display
+delta = zeros(size(mask,2));
+delta(:,1) = 1;
+
+if(gaussianLineSigma > 0)
+ delta = circshift(delta,[0 ceil(5*gaussianLineSigma)]);
+ delta = imgaussfilt(delta,gaussianLineSigma);
+ delta = circshift(delta,[0 -ceil(5*gaussianLineSigma)]);
+end
+
+% Cumulative matrix
+cumulative = zeros(size(mask));
+
+% Play button in the lower left
+hplay = uicontrol('Style','togglebutton','Units','normalized', ...
+ 'Position',[0 0 0.05 0.05],'String','||','Value',1, ...
+ 'Callback',@toggleButton);
+% Reset button in the lower right
+hreset = uicontrol('Style','pushbutton','Units','normalized', ...
+ 'Position',[0.95 0 0.05 0.05],'String','R', ...
+ 'Callback',@resetCumulative);
+% Slide control
+hslider = uicontrol('Style','slider','Units','normalized', ...
+ 'Position',[0.05 0 0.90 0.05],'String','Scan Position', ...
+ 'Min',startCol,'Max',nCols,'Value',startCol, ...
+ 'SliderStep',[1 5]/nCols, ...
+ 'Callback',@updateSlider);
+% Text label for slider
+uicontrol('Style','text','Units','normalized', ...
+ 'Position',[0 0.05 1 0.05], ...
+ 'String','Scan Position','HorizontalAlignment','left');
+
+% Axis annotation
+annotation('textarrow','Color','m','Position',[0.1 0.17 0 0.1],'String','z');
+annotation('textarrow','Color','m','Position',[0.15 0.12 0.1 0],'String','x');
+
+% Play on start
+play();
+
+ function play()
+ % Loop from min to max values
+ for aa=round(get(hslider,'Value')):nCols
+ set(hslider,'Value',aa);
+ updateSlider(hslider,[]);
+ if(~get(hplay,'Value'))
+ break;
+ end
+ pause(0.1);
+ end
+ set(hplay,'Value',0);
+ toggleButton(hplay,[]);
+ end
+ function toggleButton(source,event)
+ % Toggle the play button
+ switch(get(source,'Value'))
+ case 0
+ set(source,'String','>');
+ case 1
+ set(source,'String','||');
+ % If at the end, reset the line scan position on play
+ if(get(hslider,'Value') == get(hslider,'Max'))
+ set(hslider,'Value',get(hslider,'Min'));
+ end
+ play();
+ end
+ end
+ function updateSlider(source,event)
+ % Update the slider and the corresponding images
+ a = round(source.Value);
+ hline.XData = [a a];
+ Ta = ifft2(ifftshift(mask.*circshift(delta,a-1,2)));
+ Ta_sqmod = abs(Ta).^2;
+ set(hreal,'CData',mat2gray(real(Ta)));
+ set(hsqmod,'CData',mat2gray(Ta_sqmod));
+ set(hsqmod_line,'XData',mat2gray(Ta_sqmod(:,1))*(size(mask,2)-1)/2+1);
+ cumulative = cumulative + Ta_sqmod;
+ set(hcumulative_line,'XData', ...
+ mat2gray(cumulative(:,1))*(size(mask,2)-1)/2+1);
+ set(hcumulative,'CData',mat2gray(cumulative));
+ end
+ function resetCumulative(source,event)
+ % Zero out the cumulative matrix
+ cumulative = zeros(size(mask));
+ set(hcumulative_line,'XData', ...
+ mat2gray(cumulative(:,1))*(size(mask,2)-1)/2+1);
+ set(hcumulative,'CData',mat2gray(cumulative));
+ end
+
+end
+
diff --git a/2019-chang-field-synthesis/FieldSynthesis/FieldSynthesis/FieldSynthesisTheorem.m b/2019-chang-field-synthesis/FieldSynthesis/FieldSynthesis/FieldSynthesisTheorem.m
new file mode 100644
index 0000000..7d22d4e
--- /dev/null
+++ b/2019-chang-field-synthesis/FieldSynthesis/FieldSynthesis/FieldSynthesisTheorem.m
@@ -0,0 +1,224 @@
+function [efield,slice,smear,Q,T] = FieldSynthesisTheorem(efield)
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% Small program to illustrate a new Field Synthesis Theorem.
+%
+% In essence it says that the projection of the absolute modulus of a
+% complex field is the same as when one takes a sliding window in the
+% Fourier domain, makes an inverse FFT of each slice, take the absolute
+% modulus of that and sum it up while moving the window through the
+% spectrum. This has important applications for scanned light-sheets and
+% how to generate them.
+%
+% Reto Fiolka, May 2017
+% Mark Kittisopikul, May 2017 - Aug 2018
+%
+% INPUT
+% efield - electric field at the focal plane, may be real or complex
+% valued
+%
+% OUTPUT
+% efield - electric field at the focal plane
+% slice - intensity of illumination pattern by field synthesis
+% smear - intensity of illumination pattern by dithering
+% Q - Fourier transform of individual line scan without phasing,a=10
+% T - Fourier transform of individual line scan with phasing,a=10
+%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+% Field Synthesis Demonstration -
+% MATLAB code to demonstrate field synthesis light sheet microscopy
+% Copyright (C) 2018 Reto Fioka,
+% University of Texas Southwestern Medical Center
+% Copyright (C) 2018 Mark Kittisopikul,
+% Northwestern University
+%
+% This program is free software: you can redistribute it and/or modify
+% it under the terms of the GNU General Public License as published by
+% the Free Software Foundation, either version 3 of the License, or
+% (at your option) any later version.
+%
+% This program is distributed in the hope that it will be useful,
+% but WITHOUT ANY WARRANTY; without even the implied warranty of
+% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+% GNU General Public License for more details.
+%
+% You should have received a copy of the GNU General Public License
+% along with this program. If not, see .
+
+%% Initialize input
+% assume this is the e-field in real space (real or complex valued)
+if(nargin < 1)
+ % Use stock image as an arbitrary efield
+ efield = imread('cameraman.tif');
+ imaginaryAmplitude = 1;
+ efield=double(efield)+1j*rand(size(efield))*imaginaryAmplitude;
+end
+
+% efield is F(x,y) in the proof and can be complex valued
+% get efield properties
+sz = size(efield);
+N = sz(2);
+
+% then this is the spectrum of the efield
+% spectrum is F_hat(k_x,k_y) in the proof
+spectrum_unshifted = fft2(efield);
+spectrum=fftshift(spectrum_unshifted);
+% the intensity is the modulus squared of the efield
+% this is a real valued image
+I=abs(efield).^2;
+% slice is an array that is created by superposition of
+% inverse FFTs of spectral slices
+slice=zeros(sz);
+% smear is created by scanning the image in real space
+smear=zeros(sz);
+
+%% Do line scan
+for a=1:N
+ % take one slice of spectrum and take inverse FFT
+ T_hat=zeros(sz);
+ T_hat(:,a)=spectrum(:,a);
+ T=ifft2(ifftshift(T_hat));
+ % superimpose intensities (modulus squared) of
+ % inverse FFTs of spectral slices
+ slice=slice+abs(T).^2;
+ % smearing the image in x-direction
+ % intensity is superimposed at every position
+ smear=smear+(circshift(I,[0,a]));
+end
+
+% We could also create smear as follows:
+% smear = repmat(sum(I,2),1,256);
+
+%% Line profiles of the smeared intensity images
+
+sliceProfile=slice(:,1);
+
+smearProfile=smear(:,1)/N;
+
+%alternatively, one can also just project the intensity image I in x
+projectionProfile=sum(I,2)/N;
+
+% The profile can be calculated directly by taking a 1 dimensional fourier
+% transform
+oneDFT = ifft(spectrum_unshifted)/N;
+% This line is equivalent to the above
+% oneDFT = fft(efield,[],2)/N;
+oneDFT = abs(oneDFT).^2;
+oneDFT = sum(oneDFT,2);
+
+
+%% Plot Figures;
+figure;
+subplot(2,3,1);
+imshow(I,[]);
+title('Original Intensity');
+subplot(2,3,2);
+imshow(slice,[]);
+title('Slice');
+subplot(2,3,3);
+imshow(smear,[]);
+title('Smear (~Dither)');
+
+
+% All profiles are identical
+subplot(2,3,4:6);
+plot(projectionProfile,'ko','DisplayName','Projection')
+hold on;
+xlim([1 256]);
+
+plot(sliceProfile,'b+','DisplayName','Slice');
+
+plot(smearProfile,'rx','DisplayName','Smear');
+
+plot(oneDFT,'g.','DisplayName','1D FT');
+
+grid on;
+legend('show','Location','southwest');
+title('Vertical Profiles are the Same');
+xlabel('z position');
+
+disp('Press any key');
+pause;
+
+%% Explanation of the profile of individual line scans
+% T represents a selected column in the spectral field selected by the scan
+
+efield_xft = fft(efield,[],2);
+
+% for k=1:N
+
+a = 10;
+hfig = figure('units','normalized','outerposition',[0 0 1 1]);
+
+% T is constructed similarly to above in the for loop
+% The only difference is how k is indexed in the unshifted spectrum
+T_hat=zeros(sz);
+T_hat(:,a)=spectrum_unshifted(:,a);
+T = ifft2(T_hat);
+
+% Q differs from T because the selected column is copied into k_x = 0
+Q_hat = zeros(N);
+Q_hat(:,1) = spectrum_unshifted(:,a);
+Q = ifft2(Q_hat);
+
+subplot(4,3,1);
+imshow(real(Q),[]);
+title('Real(Q)');
+
+subplot(4,3,2);
+imshow(imag(Q),[]);
+title('Imag(Q)');
+
+subplot(4,3,3);
+imshow(abs(Q).^2,[]);
+title('abs(Q)^2');
+
+subplot(4,3,4);
+imshow(real(T),[]);
+title('Real(T)');
+
+subplot(4,3,5);
+imshow(imag(T),[]);
+title('Imag(T)');
+
+subplot(4,3,6);
+imshow(abs(T).^2,[]);
+title('abs(T)^2');
+
+subplot(4,3,7:9);
+plot(real(Q(:,1))*N,'r-');
+hold on;
+plot(real(efield_xft(:,a)),'ro');
+
+plot(imag(Q(:,1))*N,'b-');
+plot(imag(efield_xft(:,a)),'bo');
+
+legend({'real(Q)','Real 1D FFT of E','imag(Q)','Imag 1D FFT of E'}, ...
+ 'Location','southoutside','Orientation','horizontal');
+title('Q is the Fourier Transform of a Line Scan in the Spectrum');
+xlim([1 N]);
+xlabel('z position (pixels)');
+
+
+% pause(1);
+
+subplot(4,3,10:12);
+plot(real(exp(1i*2*pi*(a-1)/N.*(0:N-1))),'r-');
+hold on;
+plot(real(T(1,:)./Q(1,:)),'ro');
+plot(imag(exp(1i*2*pi*(a-1)/N.*(0:N-1))),'b-');
+plot(imag(T(1,:)./Q(1,:)),'bo');
+title(['T is Q With Complex Modulation ' ...
+ 'Due to the Location of the Line Scan']);
+xlabel('z position (pixels)');
+ylabel('T/Q');
+xlim([1 N]);
+
+
+
+% pause(1);
+
+% close(hfig);
+% end;
+
+end
diff --git a/2019-chang-field-synthesis/FieldSynthesis/FieldSynthesis/FieldSynthesisVersusLattice.m b/2019-chang-field-synthesis/FieldSynthesis/FieldSynthesis/FieldSynthesisVersusLattice.m
new file mode 100644
index 0000000..d10bb16
--- /dev/null
+++ b/2019-chang-field-synthesis/FieldSynthesis/FieldSynthesis/FieldSynthesisVersusLattice.m
@@ -0,0 +1,234 @@
+function [varargout] = FieldSynthesisVersusLattice(n,w,r,offset,dispRange)
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%
+%Simulation for field synthesis
+%
+% compares field synthesis vs square lattice
+%
+%
+% Reto, May 2017
+% Mark Kittisopikul, August 2018
+%
+% INPUT
+% n - Defines the size of the image and mask to be n x n
+% w - Width of the mask components
+% r - Radius of the annulus (width is centered on the annulus)
+% offset - Offset of the side components of the square lattice
+% dispRange - Set which part of mask to display in figures
+%
+% OUTPUT
+% out - struct containing workspace of this function
+%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+% Field Synthesis Demonstration -
+% MATLAB code to demonstrate field synthesis light sheet microscopy
+% Copyright (C) 2018 Reto Fioka,
+% University of Texas Southwestern Medical Center
+% Copyright (C) 2018 Mark Kittisopikul,
+% Northwestern University
+%
+% This program is free software: you can redistribute it and/or modify
+% it under the terms of the GNU General Public License as published by
+% the Free Software Foundation, either version 3 of the License, or
+% (at your option) any later version.
+%
+% This program is distributed in the hope that it will be useful,
+% but WITHOUT ANY WARRANTY; without even the implied warranty of
+% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+% GNU General Public License for more details.
+%
+% You should have received a copy of the GNU General Public License
+% along with this program. If not, see .
+
+%% Parameters
+% Size of the mask
+if(nargin < 1)
+ n=4096;
+end
+% Width of the annulus
+if(nargin < 2)
+ w=5;
+end
+% Radius of the annulus
+if(nargin < 3)
+ r=256;
+ % r = 200
+end
+% Offset for side slits
+if(nargin < 4)
+ offset = r;
+ % offset=198;
+end
+% Display range
+if(nargin < 5)
+ dispRange = (-600:600)+floor(n/2)+1;
+end
+
+%% Create clean annulus
+% We do not need to initialize
+% since we will create the matrix with createAnnulus
+% annulus = zeros(n);
+
+% Vector for x and y, which should be symmetric
+v = 1:n;
+% zeroth order coefficient is at n/2+1,n/2+1 due to fftshift/ifftshift
+v = v-floor(n/2)-1;
+
+% Create an annulus of radius r with width w centered in an n x n matrix
+annulus = createAnnulus(v, r, w);
+
+% Select columns for mask
+abs_v = abs(v);
+% Select three sets of frequency columns
+% 1) Group of columns centered on the offset to the left of width w
+% 2) Group of columns in the center of width w
+% 3) Group of columns centered on the offset to the right of width w
+selected_columns = (abs_v < offset+w/2 & abs_v > offset-w/2) | ...
+ (v < w/2 & v > -w/2);
+
+% Remove unselected columns from mask
+latticeFourierMask = annulus;
+latticeFourierMask(:,~selected_columns) = false;
+latticeFourierMask = double(latticeFourierMask);
+% latticeFourierMask is now the Fourier mask of a square lattice
+
+%% Field Synthesis
+
+% The field synthesis is process is equivalent to summing over a
+% 1D Fourier Transform of the mask
+% 1) Shift so the 0th frequency is at 1,1
+% 2) Do the 1D inverse FT
+% 3) Shift so the center pixel is the center of the image
+fieldSynthesisProfile = fftshift(ifft(ifftshift(latticeFourierMask)));
+fieldSynthesisProfile = sum(abs(fieldSynthesisProfile).^2,2);
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% Lattice simulation
+
+% The electric field of lattice is the 2D Fourier Transform of the mask
+lattice_efield=fftshift(ifft2(ifftshift(latticeFourierMask)));
+% Take the square modulus to get the intensity
+lattice=abs(lattice_efield).^2;
+% Perform the dithering operation
+latticeLineProfile=sum(lattice,2);
+% Scale by n, due ifft2 normalization
+latticeLineProfile=latticeLineProfile*n;
+
+%% Plot: Compare lattice profile to field synthesis profile
+figure;
+% Show the convention lattice profile
+subplot(3,1,1);
+plot(dispRange-n/2+1,latticeLineProfile(dispRange));
+xlim([min(dispRange) max(dispRange)]-n/2+1);
+title('Conventional Lattice Profile');
+
+subplot(3,1,2);
+% Show the field synthesis profile
+plot(dispRange-n/2+1,fieldSynthesisProfile(dispRange),'r')
+xlim([min(dispRange) max(dispRange)]-n/2+1);
+title('Field Synthesis Profile');
+
+subplot(3,1,3);
+% Compare the two profiles
+plot(dispRange-n/2+1,latticeLineProfile(dispRange));
+hold on;
+plot(dispRange-n/2+1,fieldSynthesisProfile(dispRange),'r--')
+xlim([min(dispRange) max(dispRange)]-n/2+1);
+title('Comparison of Lattice and Field Synthesis Profiles');
+
+%% Analysis of all interference patterns in lattice
+
+% lattice is the intensity of the pattern as per above
+% lattice=abs(B).^2;
+%Fourier transform of lattice
+lattice_hat=fftshift(fft2(ifftshift(lattice)));
+
+
+%% Dithering lattice: lattice pattern is shifted by subpixel steps and added
+% Calculate time average by dithering over the period
+period = n/offset;
+
+% To dither, we average over one period of the lattice by shifting
+if(period == round(period))
+ % The shifting operation can be done via a 2D convolution
+ latticeDithered = conv2(lattice,ones(1,period)/period,'same');
+ % % The following block of code is equivalent to the above line
+ % latticeDithered = zeros(size(lattice));
+ % for s=floor(-period/2):floor(period/2)-1
+ % latticeDithered = latticeDithered + circshift(lattice,s,2);
+ % end
+ % latticeDithered = latticeDithered / period;
+else
+ % Above, we assume that the period is of integer units.
+ % If it were not of integer units, we can use the following code
+ % Use the convolution theorem to do convolution in Fourier space
+ latticeDithered = bsxfun(@times,lattice_hat,sinc(v/period));
+ latticeDithered = fftshift(ifft2(ifftshift(latticeDithered)));
+ % % We could also approximate the the dithering via subpixel steps
+ % subpixelFactor = 1/(period-floor(period));
+ % subpixelFactor = ceil( subpixelFactor );
+ % subpixelFactor = min(subpixelFactor,10);
+ % period = floor(period*subpixelFactor);
+ % latticeDithered = conv2( interpft(lattice,n*subpixelFactor,2), ...
+ % ones(1,period)/period,'same');
+ % latticeDithered = interpft(latticeDithered,n,2);
+end
+
+%Fourier transform of dithered lattice
+latticeDithered_hat=fftshift(fft2(ifftshift(latticeDithered)));
+
+%% Plot 2x3
+
+h = figure;
+% Make figure full screen
+set(h,'Units','normalized','Position',[0 0 1 1]);
+
+% Show the mask
+subplot(2,3,1)
+imshow(latticeFourierMask(dispRange,dispRange),[0 1e-6]);colormap hot
+title('Electric field in pupil');
+
+% Show the Fourier transform of the _intensity_ of the lattice
+subplot(2,3,2)
+imshow(abs(lattice_hat(dispRange,dispRange)),[0 1e-6]);colormap hot
+title('Fourier components of lattice intensity');
+
+% Show the Fourier transform of the dithered lattice intensity
+subplot(2,3,3)
+imshow(abs(latticeDithered_hat(dispRange,dispRange)),[0 1e-6]);colormap hot
+title('Fourier components of dithered lattice intensity');
+
+% Show the electric field of the lattice at the focal plane
+subplot(2,3,4);
+imshow(lattice_efield(dispRange,dispRange),[]);
+title('Electric field of lattice at focal plane');
+% Zoom in so we can see the details of the lattice
+xlim([-75 75]+length(dispRange)/2+1);
+ylim([-75 75]+length(dispRange)/2+1);
+
+% Show the intensity of the lattice
+subplot(2,3,5)
+imshow(lattice(dispRange,dispRange),[]);
+title('Intensity of lattice');
+% Zoom in so we can see the details of the lattice
+xlim([-75 75]+length(dispRange)/2+1);
+ylim([-75 75]+length(dispRange)/2+1);
+
+% Show the Fourier transform of the dithered lattice intensity
+subplot(2,3,6)
+imshow(latticeDithered(dispRange,dispRange),[]);
+title('Averaged Intensity of dithered lattice');
+xlim([-75 75]+length(dispRange)/2+1);
+ylim([-75 75]+length(dispRange)/2+1);
+
+%% Output
+if(nargout > 0)
+ % If output is requested, pack workspace into a struct
+ varnames = who;
+ out = struct;
+ for varIdx = 1:length(varnames)
+ out.(varnames{varIdx}) = eval(varnames{varIdx});
+ end
+ varargout{1} = out;
+end
\ No newline at end of file
diff --git a/2019-chang-field-synthesis/FieldSynthesis/FieldSynthesis/createAnnulus.m b/2019-chang-field-synthesis/FieldSynthesis/FieldSynthesis/createAnnulus.m
new file mode 100644
index 0000000..f46930d
--- /dev/null
+++ b/2019-chang-field-synthesis/FieldSynthesis/FieldSynthesis/createAnnulus.m
@@ -0,0 +1,81 @@
+function [ annulus ] = createAnnulus( n, r, w )
+%createAnnulus Create a binary annular mask
+%
+% INPUT (all optional)
+% n - size of the annular mask as a scalar, or vector with coordinates
+% r - radius of the annulus in pixels
+% w - width of the annulus in pixels
+%
+% OUTPUT
+% annulus - n x n matrix with the annulus marked with ones
+%
+% USAGE
+% figure;
+% imshow(createAnnulus(256,32,4),[]);
+%
+% Create Bessel beam 2D profile
+% figure;
+% imshow(log(abs(fftshift(ifft2(ifftshift(createAnnulus)))).^2+1),[]);
+% colormap(gca,hot);
+% caxis([0 6e-4]);
+%
+% REMARKS
+% This could be streamlined using the bresenham circle algorithm
+
+% Mark Kittisopikul, August 25th, 2018
+% Lab of Robert D. Goldman;
+% Northwestern University
+
+% Field Synthesis Demonstration -
+% MATLAB code to demonstrate field synthesis light sheet microscopy
+% Copyright (C) 2018 Reto Fioka,
+% University of Texas Southwestern Medical Center
+% Copyright (C) 2018 Mark Kittisopikul,
+% Northwestern University
+%
+% This program is free software: you can redistribute it and/or modify
+% it under the terms of the GNU General Public License as published by
+% the Free Software Foundation, either version 3 of the License, or
+% (at your option) any later version.
+%
+% This program is distributed in the hope that it will be useful,
+% but WITHOUT ANY WARRANTY; without even the implied warranty of
+% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+% GNU General Public License for more details.
+%
+% You should have received a copy of the GNU General Public License
+% along with this program. If not, see .
+
+
+if(nargin < 1)
+ n = 256;
+end
+if(nargin < 2)
+ r = 32;
+end
+if(nargin < 3)
+ w = 4;
+end
+
+if(isscalar(n))
+ v = 1:n;
+ % zeroth order coefficient is at n/2+1,n/2+1 due to fftshift/ifftshift
+ v = v-floor(n/2)-1;
+else
+ % non-scalar given. Use n as coordinates
+ v = n;
+end
+
+% Calculate radial position in polar coordinate system
+% Pre-bsxfun expansion code (pre 2017a):
+[Y,X] = meshgrid(v,v);
+Q = hypot(X,Y);
+
+% Bsxfun expansion code (post-2017a)
+% Q = hypot(v,v.');
+
+% Create an annulus with radius r and width w
+annulus = abs(Q -r) < w;
+
+end
+
diff --git a/2019-chang-field-synthesis/FieldSynthesis/FieldSynthesisInteractive.m b/2019-chang-field-synthesis/FieldSynthesis/FieldSynthesisInteractive.m
new file mode 100644
index 0000000..56d9e7a
--- /dev/null
+++ b/2019-chang-field-synthesis/FieldSynthesis/FieldSynthesisInteractive.m
@@ -0,0 +1,311 @@
+function [ hfig ] = FieldSynthesisInteractive( mask, doshift, lineProfile )
+%FieldSynthesisInteractive Create an interactive line scan demonstration of
+%field synthesis
+%
+% INPUT
+% mask - mask at the pupil, which is the Fourier transform of electrical
+% field at the focal plane. zeroth frequency should be in the
+% middle. ifftshift will be applied for calcualtions.
+% doshift - if true, shift the Fourier transform of the mask so the first
+% pixel is in the center of the image rather than the upper left
+% lineProfile - line profile for the scan in the pupil mask
+% EITHER:
+% 1) 0 for a delta function line scan
+% 2) a positive double value indicating the sigma of the
+% gaussianLine in pixels
+% 3) a line profile vector the same width as mask. The main
+% peak is expected to be in the center and ifftshift
+% will be applied
+%
+% OUTPUT
+% hfig - handle for the display figure
+%
+% INTERACTIVE
+% The button in the lower left plays / pauses the movie.
+% The arrow buttons on the slider will move the scan by one column.
+% Clicking on the trough of the slider will move the scan by five columns.
+% The button in the lower right labeled R will reset the cumulative view.
+%
+% DISPLAY
+% The display consists of 6 panels
+% 1 2 3
+% 4 5 6
+% 1. The pupil mask, |\hat{F}|^2 in log scale
+% 2. The object domain, |F|^2, scanning left to right
+% Line plot indicates beam intensity
+% 3. Dithered, averaged intensity. Cumulative sum of display #2
+% 4. Display of the real component of the electric field of an insteaneous
+% scan, Real{T_a}
+% 5. Instaneous scan intensity, |T_a|^2
+% 6. Cumulative scan intensity of display #5
+%
+% EXAMPLE
+% FieldSynthesisInteractive; % default demonstration with cameraman
+% FieldSynthesisInteractive(createAnnulus(),true); % demonstrate a Bessel beam
+% Create a sinc profile to emulate a scan over a finite range
+% N = 128;
+% x = -ceil(N/2):floor(N/2-1)
+% L_hat = fftshift(fft(ifftshift(abs(x) < 30)));
+% FieldSynthesisInteractive(createAnnulus(),true,L_hat);
+%
+% Mark Kittisopikul , August 2018
+% Goldman Lab
+% Northwestern University
+
+% Field Synthesis Demonstration -
+% MATLAB code to demonstrate field synthesis light sheet microscopy
+% Copyright (C) 2018 Reto Fioka,
+% University of Texas Southwestern Medical Center
+% Copyright (C) 2018 Mark Kittisopikul,
+% Northwestern University
+%
+% This program is free software: you can redistribute it and/or modify
+% it under the terms of the GNU General Public License as published by
+% the Free Software Foundation, either version 3 of the License, or
+% (at your option) any later version.
+%
+% This program is distributed in the hope that it will be useful,
+% but WITHOUT ANY WARRANTY; without even the implied warranty of
+% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+% GNU General Public License for more details.
+%
+% You should have received a copy of the GNU General Public License
+% along with this program. If not, see .
+
+if(nargin < 1)
+ mask = fftshift(fft2(double(imread('cameraman.tif'))));
+end
+if(nargin < 2)
+ doshift = false;
+end
+if(nargin < 3)
+ % delta function
+ lineProfile = 0;
+end
+
+%% Setup helper functions
+% Show the intensity (square modulus) using a log transform
+dispLogAbs2PlusOne = @(x) mat2gray(log(abs(x).^2 + 1));
+% Do a 1D smear (dithering)
+smear1D = @(I,dim) repmat(mean(I,dim),circshift([1 size(I,dim)],dim,2));
+% Prepare Image for 1D DFT Display
+disp1DFFT = @(I,dim) dispLogAbs2PlusOne(fftshift(fft(I,[],dim),dim));
+% Prepare Image for 2D DFT Display
+disp2DFFT = @(I) dispLogAbs2PlusOne(fftshift(fft2(I)));
+
+%% Setup line profile
+if(isscalar(lineProfile))
+ % If lineProfile is scalar, interpret it to be gaussianLineSigma
+ gaussianLineSigma = lineProfile;
+ assert(gaussianLineSigma >= 0,...
+ 'lineProfile scalar must be nonnegative');
+
+ % 1D delta function
+ L_hat = zeros(size(mask));
+ L_hat(:,1) = 1;
+
+ % If lineProfile is 0, then line profile is delta function
+ if(gaussianLineSigma > 0)
+ L_hat = circshift(L_hat,[0 ceil(5*gaussianLineSigma)]);
+ L_hat = imgaussfilt(L_hat,gaussianLineSigma);
+ L_hat = circshift(L_hat,[0 -ceil(5*gaussianLineSigma)]);
+ end
+elseif(isvector(lineProfile))
+ assert(length(lineProfile) == size(mask,2), ...
+ 'lineProfile vector must match size(mask,2)');
+ % 1-D arbitrary line profile is provided
+ L_hat = lineProfile;
+ L_hat = ifftshift(L_hat);
+ L_hat = repmat(L_hat(:).',size(mask,1),1);
+else
+ assert(all(size(lineProfile) == size(mask)), ...
+ 'lineProfile field must match mask size');
+ % 2-D arbitrary line profile is provided
+ L_hat = lineProfile;
+ L_hat = ifftshift(L_hat);
+end
+
+L_hat_sqmod = abs(L_hat).^2;
+
+L = ifft2(L_hat);
+L_sqmod = fftshift(abs(L).^2);
+
+center = floor(size(mask,2)/2+1);
+
+%% Modulate the mask so that the image at the focal plane is centered
+% if(doshift)
+% shifter = zeros(size(mask));
+% shifter(ceil(size(mask,1)/2+1),ceil(size(mask,1)/2+1)) = 1;
+% mask = mask .* fft2(shifter);
+% end
+% mask = ifftshift(mask);
+
+mask_unshifted = ifftshift(mask);
+% startCol = find(any(mask,1),1);
+% nCols = find(any(mask,1),1,'last');
+
+startCol = 1;
+nCols = size(mask,2);
+F = ifft2(mask_unshifted);
+F_sqmod = abs(F).^2;
+
+if(doshift)
+ F_sqmod = fftshift(F_sqmod);
+end
+
+% smeared = sum(abs(F).^2,2);
+% smeared = repmat(smeared,1,size(F,2));
+
+% Use circulation convolution due to potential x-boundary effects with small
+% sigma. Linear convolution (conv2) will work in large sigma case
+cconv2 = @(A,B,~) fftshift(ifft2(fft2(ifftshift(A)).*fft2(ifftshift(B))));
+smeared = cconv2(F_sqmod,L_sqmod);
+
+%% Begin display
+
+hfig = figure;
+
+% Mask at pupil
+subplot(2,3,1);
+himMask = imshowpair(dispLogAbs2PlusOne(mask),zeros(size(mask)));
+title('Mask: $\log(|\hat{F}|^2+1)$','interpreter','latex');
+% hline = patch([1 1],[1 size(mask,2)],0,'EdgeColor','g','EdgeAlpha',0.5);
+
+% Focal plane
+subplot(2,3,2);
+hFocalPlane = imshow(F_sqmod,[]);
+title('Intensity: $|F|^2$','interpreter','latex');
+hold on;
+hlsqmod = plot(1:size(mask,2),-mat2gray(L_sqmod(center,:))*size(mask,1)/2+size(mask,1));
+
+% Smeared
+subplot(2,3,3)
+hSmeared = imshow(smeared,[]);
+hold on;
+plot(mat2gray(smeared(:,center))*(size(mask,2)-1)/2+1,1:size(mask,1),'m')
+title('Dithered Intensity: $\sum_x |F|^2$','interpreter','latex');
+
+% Electric field at focal plane
+subplot(2,3,4);
+hreal = imshow(zeros(size(mask)),[]);
+hreal_title = title('Electric field: $Real\{T_a\}$','interpreter','latex');
+
+% Instaneous intensity at line scan
+subplot(2,3,5);
+hsqmod = imshow(zeros(size(mask)),[]);
+hold on;
+hsqmod_line = plot(zeros(1,size(mask,1)),1:size(mask,1),'m');
+hsqmod_title = title('Scan Intensity: $|T_a|^2$','interpreter','latex');
+
+% Cumulative intensity of line scans
+subplot(2,3,6);
+hcumulative = imshow(zeros(size(mask)),[]);
+hold on;
+hcumulative_line = plot(zeros(1,size(mask,1)),1:size(mask,1),'m');
+title('Cum. Intensity: $\sum_a |T_a|^2$','interpreter','latex');
+
+% Cumulative matrix
+cumulativeScan = zeros(size(mask));
+cumulative = zeros(size(mask));
+
+% Play button in the lower left
+hplay = uicontrol('Style','togglebutton','Units','normalized', ...
+ 'Position',[0 0 0.05 0.05],'String','||','Value',1, ...
+ 'Callback',@toggleButton);
+% Reset button in the lower right
+hreset = uicontrol('Style','pushbutton','Units','normalized', ...
+ 'Position',[0.95 0 0.05 0.05],'String','R', ...
+ 'Callback',@resetCumulative);
+% Slide control
+hslider = uicontrol('Style','slider','Units','normalized', ...
+ 'Position',[0.05 0 0.90 0.05],'String','Scan Position', ...
+ 'Min',startCol,'Max',nCols,'Value',startCol, ...
+ 'SliderStep',[1 5]/nCols, ...
+ 'Callback',@updateSlider);
+% Text label for slider
+uicontrol('Style','text','Units','normalized', ...
+ 'Position',[0 0.05 1 0.05], ...
+ 'String','Scan Position','HorizontalAlignment','left');
+
+% Axis annotation
+annotation('textarrow','Color','m','Position',[0.1 0.17 0 0.1],'String','z');
+annotation('textarrow','Color','m','Position',[0.15 0.12 0.1 0],'String','x');
+
+% Play on start
+play();
+
+ function play()
+ % Loop from min to max values
+ for aa=round(get(hslider,'Value')):nCols
+ set(hslider,'Value',aa);
+ updateSlider(hslider,[]);
+ if(~get(hplay,'Value'))
+ break;
+ end
+ pause(0.1);
+ end
+ set(hplay,'Value',0);
+ toggleButton(hplay,[]);
+ end
+ function toggleButton(source,event)
+ % Toggle the play button
+ switch(get(source,'Value'))
+ case 0
+ set(source,'String','>');
+ case 1
+ set(source,'String','||');
+ % If at the end, reset the line scan position on play
+ if(get(hslider,'Value') == get(hslider,'Max'))
+ set(hslider,'Value',get(hslider,'Min'));
+ end
+ play();
+ end
+ end
+ function updateSlider(source,event)
+ % Update the slider and the corresponding images
+ a = round(source.Value);
+% hline.XData = [a a];
+ Ta = ifft2(ifftshift(mask.*circshift(L_hat,a-1,2)));
+ Ta_sqmod = abs(Ta).^2;
+ if(doshift)
+ Ta = fftshift(Ta);
+ Ta_sqmod = fftshift(Ta_sqmod);
+ end
+ F_sqmod_scanning = circshift(F_sqmod,-center+a-1,2);
+
+ pupil = get(himMask,'CData');
+ pupil(:,:,1) = mat2gray(circshift(L_hat_sqmod,a-1,2))*255;
+ pupil(:,:,3) = pupil(:,:,1);
+
+ set(himMask,'CData',pupil);
+
+ set(hFocalPlane,'CData',F_sqmod_scanning);
+ cumulativeScan = cumulativeScan + F_sqmod_scanning.*L_sqmod(center,a);
+ set(hSmeared,'CData',cumulativeScan);
+
+
+ set(hreal,'CData',mat2gray(real(Ta)));
+ set(hsqmod,'CData',mat2gray(Ta_sqmod));
+ set(hsqmod_line,'XData',mat2gray(Ta_sqmod(:,center))*(size(mask,2)-1)/2+1);
+ cumulative = cumulative + Ta_sqmod;
+ set(hcumulative_line,'XData', ...
+ mat2gray(cumulative(:,center))*(size(mask,2)-1)/2+1);
+ set(hcumulative,'CData',mat2gray(cumulative));
+ end
+ function resetCumulative(source,event)
+ % Zero out the cumulative matrix
+ cumulative = zeros(size(mask));
+ set(hcumulative_line,'XData', ...
+ mat2gray(cumulative(:,1))*(size(mask,2)-1)/2+1);
+ set(hcumulative,'CData',mat2gray(cumulative));
+
+ cumulativeScan = zeros(size(mask));
+ set(hSmeared,'CData',mat2gray(cumulativeScan));
+% set(hcumulative_line,'XData', ...
+% mat2gray(cumulative(:,1))*(size(mask,2)-1)/2+1);
+% set(hcumulative,'CData',mat2gray(cumulative));
+
+ end
+
+end
+
diff --git a/2019-chang-field-synthesis/FieldSynthesis/FieldSynthesisProofIllustration.html b/2019-chang-field-synthesis/FieldSynthesis/FieldSynthesisProofIllustration.html
new file mode 100644
index 0000000..16b2acb
--- /dev/null
+++ b/2019-chang-field-synthesis/FieldSynthesis/FieldSynthesisProofIllustration.html
@@ -0,0 +1,607 @@
+
+
Field Synthesis Proof Illustration Live ScriptField Synthesis Proof Illustration Live Script
Supplementary Material to:
Universal Light-Sheet Generation with Field Synthesis
Bo-Jui Chang, Mark Kittisopikul, Kevin M. Dean, Phillipe Roudot, Erik Welf and Reto Fiolka.
Field Synthesis Theorem for an Ideal Line Scan
We want to prove that the sum of the intensity of individual line scans produces a light-sheet illumination pattern equivalent to the average intensity created by a scanned light-sheet.
Let F(x,z) describe the electric field produced by illuminating the entire mask in the back pupil plane.
represents the mask at the back pupil plane, the Fourier transform of the electric field. An individual line scan is represented by the function
and has a Fourier transform
. The intensity of the illumination is represented by the square modulus
. The intensity created by illuminating the entire annular mask is
. The intensity of an individual line scan is
. A sum of the intensity of individual line scans can be expressed as
. An scanned light sheet has a z-profile equivalent to the average of then intensity of F(x,z) over the x-dimension:
. Thus we want to prove that 
Setup
% Annulus mask at the back focal plane
F_hat = createAnnulus(N, (82+88)/2, 10);
F_hat = imgaussfilt(double(F_hat),0.5);
% Delta function representing the line scan
% Position of the line scan for demonstration
x = ceil(-N/2):floor(N/2-1);
xlims_highzoom = [-1 1]*64+center;
ylims_highzoom = [-1 1]*64+center;
xlims_mediumzoom = [-1 1]*128+center;
ylims_mediumzoom = [-1 1]*128+center;
% Utility function to do shifts from back focal plane to object plane
% Note that the shifts are necessary to have the coefficients where fftw
% 0.1 Shift the frequency space representation so the zeroth frequency is at
% 0.2 Perform a 2-D inverse Fourier Transform
% 0.3 Shift the object space representation so that "center" is located
% in the center of the image
doInverse2DFourierTransformWithShifts = @(X) fftshift( ifft2( ifftshift(X) ) );
Definition of
, frequency space presentation of each line scan in the back focal plane
We first start at the back pupil plane where we multiply a ring by a line on a pixel-by-pixel basis.
L_hat_shifted = circshift(L_hat,[0 a]);
T_a_hat = F_hat.*L_hat_shifted;
figure('Position',[0 0 800 600]);
subplot(2,2,1); % Upper left corner
him = imshowpair(F_hat,zeros(512));
xlim(xlims_mediumzoom); ylim(ylims_mediumzoom);
text(1,1,'F_hat','Color','green');
subplot(2,2,2); % Upper right corner
him = imshowpair(zeros(512),L_hat_shifted);
xlim(xlims_mediumzoom); ylim(ylims_mediumzoom);
% Green annulus, magenta delta
subplot(2,2,3); % Lower left corner
him = imshowpair(F_hat,L_hat_shifted);
xlim(xlims_mediumzoom); ylim(ylims_mediumzoom);
subplot(2,2,4); % Lower right corner
him = imshow(T_a_hat,[]);
xlim(xlims_mediumzoom); ylim(ylims_mediumzoom);
Equation 1
In equation 1, we state the inverse 2-D Fourier transform relationship between the electric field of an instaneous line scan,
. % Save our example "a" for later use
T_a_hat_selected = T_a_hat;
L_hat_shifted_selected = L_hat_shifted;
fsGeneratedField = zeros(N);
L_hat_shifted = circshift(L_hat,[0 a]);
T_a_hat = F_hat.*L_hat_shifted;
% 1.1 Shift the frequency space representation so the zeroth frequency is
% 1.2 Perform a 2-D inverse Fourier Transform
T_a = ifft2(ifftshift(T_a_hat));
fsGeneratedField = fsGeneratedField + abs(T_a).^2;
% 1.3 Shift the object space representation so that "center" is located
% in the center of the image
fsGeneratedField = fftshift(fsGeneratedField);
imshow(fsGeneratedField,[]);
xlim(xlims_highzoom); ylim(xlims_highzoom);
fsGeneratedFieldSlice = fsGeneratedField(:,center);
plot(fsGeneratedFieldSlice,z);
ylim(xlims_highzoom-center);
semilogx(mat2gray(fsGeneratedFieldSlice)+1e-5,z);
ylim(xlims_highzoom-center);
% Restore our example "a"
T_a_hat = T_a_hat_selected;
L_hat_shifted = L_hat_shifted_selected;
Equation 2
In equation 2, we substitute in the frequency space representation at the back focal plane which we just defined above.
Note that because
is not conjugate symmetric,
, the range of
is complex valued. To illustrate this we will focus on a single instaneous line scan at "a". Change the variable "a" above to view another slice.
% 2.1 Shift the frequency space representation so the zeroth frequency
% is at matrix index (1,1)
% 2.2 Perform a 2-D inverse Fourier Transform
T_a = ifft2(ifftshift(T_a_hat));
% 2.3 Shift the object space representation so that "center" is located
% in the center of the image
% Subsequent inverse Fourier Transforms will use
% doInverse2DFourierTransformWithShifts as defined in setup
% T_a = doInverse2DFourierTransformWithShifts(T_a_hat);
him = imshow(real(T_a),[]);
him.Parent.Position = [0 0 0.3 1];
text(256-56,256-56,'Real\{ T_a \}','Color','green');
xlim(xlims_highzoom); ylim(xlims_highzoom);
him = imshow(imag(T_a),[]);
him.Parent.Position = [ 0.33 0 0.3 1];
text(256-56,256-56,'Imaginary\{ T_a \}','Color','green');
xlim(xlims_highzoom); ylim(xlims_highzoom);
him = imshow(abs(T_a).^2,[]);
him.Parent.Position = [0.67 0 0.3 1];
text(256-56,256-56,'Square Magnitude\{ T_a \}','Color','green');
xlim(xlims_highzoom); ylim(xlims_highzoom);
Equation 3
Next we apply the the 2-D Convolution Theorem to observe that
is the 2-D convolution of the inverse Fourier Transform of each term. F = doInverse2DFourierTransformWithShifts(F_hat);
him = imshow(real(F),[]);
him.Parent.Position = [0 0 0.3 1];
text(256-56,256-56,'Real\{ F \}','Color','green');
xlim(xlims_highzoom); ylim(xlims_highzoom);
him = imshow(imag(F),[0 1]);
him.Parent.Position = [ 0.33 0 0.3 1];
text(256-56,256-56,'Imaginary\{ F \}','Color','green');
xlim(xlims_highzoom); ylim(xlims_highzoom);
him = imshow(abs(F).^2,[]);
him.Parent.Position = [0.67 0 0.3 1];
text(256-56,256-56,'| F |^2','Color','green');
xlim(xlims_highzoom); ylim(xlims_highzoom);
L_shifted = doInverse2DFourierTransformWithShifts(L_hat_shifted);
him = imshow(real(L_shifted),[]);
him.Parent.Position = [0 0 0.3 1];
text(256-56,256-56,'Real\{ L\_shifted \}','Color','green','interpreter','tex');
xlim(xlims_highzoom); ylim(xlims_highzoom);
him = imshow(imag(L_shifted),[]);
him.Parent.Position = [ 0.33 0 0.3 1];
text(256-56,256-56,'Imaginary\{ L\_shifted \}','Color','green');
xlim(xlims_highzoom); ylim(xlims_highzoom);
him = imshow(abs(L_shifted).^2,[]);
him.Parent.Position = [0.67 0 0.3 1];
text(256-56,256-56,'| L\_shifted |^2','Color','green');
xlim(xlims_highzoom); ylim(xlims_highzoom);
T_a_by_conv = conv2(F,L_shifted,'same');
him = imshow(real(T_a_by_conv),[]);
him.Parent.Position = [0 0 0.3 1];
text(256-56,256-56,'Real\{ F ** L\_shifted \}','Color','green','interpreter','tex');
xlim(xlims_highzoom); ylim(xlims_highzoom);
him = imshow(imag(T_a_by_conv),[]);
him.Parent.Position = [ 0.33 0 0.3 1];
text(256-56,256-56,'Imaginary\{ F ** L\_shifted \}','Color','green');
xlim(xlims_highzoom); ylim(xlims_highzoom);
him = imshow(abs(T_a_by_conv).^2,[]);
him.Parent.Position = [0.67 0 0.3 1];
text(256-56,256-56,'| F ** L\_shifted |^2','Color','green');
xlim(xlims_highzoom); ylim(xlims_highzoom);
Equation 4
The inverse 2-D Fourier Transform of
is
. Below we illustrate that the product of the complex exponential and
is the same as
. complex_exp = exp(2*pi*1i*x*a/N);
ylabel('Real\{ $ \exp(\frac{2 \pi i x a }{ N}) $ \}','interpreter','latex');
ylabel('Imag\{ $ \exp(\frac{2 \pi i x a }{ N}) $ \}','interpreter','latex');
plot(abs(complex_exp).^2);
ylabel(' $ | \exp(\frac{2 \pi i x a }{ N}) |^2 $','interpreter','latex');
complex_exp = repmat(complex_exp,512,1);
L_shifted_by_product = delta_z.*complex_exp;
label = '$ \frac{1}{N}\delta(z)\exp(\frac{2 \pi i x a }{ N}) $';
him = imshow(real(L_shifted_by_product),[]);
him.Parent.Position = [0 0 0.3 1];
text(256-56,256-56,['Re\{' label '\}'],'Color','green','interpreter','latex');
xlim(xlims_highzoom); ylim(xlims_highzoom);
him = imshow(imag(L_shifted_by_product),[]);
him.Parent.Position = [ 0.33 0 0.3 1];
text(256-56,256-56,['Im\{' label '\}'],'Color','green','interpreter','latex');
xlim(xlims_highzoom); ylim(xlims_highzoom);
him = imshow(abs(L_shifted_by_product).^2,[]);
him.Parent.Position = [0.67 0 0.3 1];
text(256-56,256-56,['$ | $ ' label ' $ |^2 $'],'Color','green','interpreter','latex');
xlim(xlims_highzoom); ylim(xlims_highzoom);
Equation 5
Next, we can use the definition of 2-D convolution to expand out the expression as two nested summations.
hfig = figure('visible','on');
him = imshow(zeros(N,N*2),[0 1]);
cumulativeSum = zeros(N);
% Technically, we are animated the commuted convolution here, which is equivalent
% Only iterate over 3 rows of z for brevity
F_shifted = circshift(F,[zp xp]).* complex_exp(center,xp+center);
cumulativeSum = cumulativeSum + F_shifted.*(zp == 0);
him.CData = [mat2gray(abs(F_shifted).^2) mat2gray(abs(cumulativeSum).^2)];
xlim(xlims_highzoom+N); ylim(xlims_highzoom);
The above is an animation. Run this section to see it. In a static document like a PDF, only the last frame will be shown. The cumulative sum also retains its complex character as is shown in the illustration of its real component.
figure; imshow(real(cumulativeSum),[]);
xlim(xlims_highzoom); ylim(xlims_highzoom);
Equation 6
Because of the 1-D delta function
in the summation, we only need to perform the summation over x, the middle row. Only the term when
survives. hfig = figure('visible','on');
him = imshow(zeros(N,N*2),[0 1]);
cumulativeSum = zeros(N);
% Technically, we are animated the commuted convolution here, which is equivalent
% We only iterate over on row
F_shifted = circshift(F.*conj(complex_exp),[0 xp]); %exp(2*pi*1i*xp*a/N);
cumulativeSum = cumulativeSum + F_shifted;
him.CData = [mat2gray(abs(F_shifted).^2) mat2gray(abs(complex_exp.*cumulativeSum).^2)];
xlim(xlims_highzoom+N); ylim(xlims_highzoom);
Note that the variable cumulativeSum now differs from
. Let's call that field
and observe it is real valued. figure; imshow(real(complex_exp.*Q_a),[]);
xlim(xlims_highzoom); ylim(xlims_highzoom);
figure; imshow(real(Q_a),[]);
xlim(xlims_highzoom); ylim(xlims_highzoom);
% Note that Q_a is real valued!
figure; imshow(imag(Q_a),[0 1]);
xlim(xlims_highzoom); ylim(xlims_highzoom);
Equation 7
The multiplicative property of the complex modulus allows us to factor out the square modulus of the first complex exponential. The square modulus of that complex exponential is unity, 1, everywhere.
label = '\exp(\frac{2 \pi i x a }{ N})';
him = imshow(real(complex_exp),[]);
him.Parent.Position = [0 0 0.3 1];
text(256-56,256-56,['Re\{ $' label '$ \}'], ...
'BackgroundColor',[0.9 0.9 0.9],'Color','magenta','interpreter','latex');
xlim(xlims_highzoom); ylim(xlims_highzoom);
him = imshow(imag(complex_exp),[]);
him.Parent.Position = [ 0.33 0 0.3 1];
text(256-56,256-56,['Im\{ $' label '$ \}'], ...
'BackgroundColor',[0.9 0.9 0.9],'Color','magenta','interpreter','latex');
xlim(xlims_highzoom); ylim(xlims_highzoom);
% Adjust upper color limit so you can see the white square
him = imshow(abs(complex_exp).^2,[0 1.1]);
him.Parent.Position = [0.67 0 0.3 1];
text(256-56,256-56,['$ | ' label ' |^2 $'], ...
'BackgroundColor',[0.9 0.9 0.9],'Color','black','interpreter','latex');
xlim(xlims_highzoom); ylim(xlims_highzoom);
Equation 8
We can simplify the expression further using the definition of the 1-D Fourier Transform with respect to
. Note that this creates a field where the x-dimension is frequency space and the z-dimension is in object space. one_d_ft = fftshift(fft(ifftshift(F,2),[],2),2);
label = '\mathcal{F}_{x''} \left\{ F(x'',z) \right\}(k_x,z)';
him = imshow(real(one_d_ft),[]);
him.Parent.Position = [0 0 0.3 1];
text(256-56-64,256-56-32,['Re\{ $ ' label ' $ \}'],'Color','magenta','interpreter','latex');
xlim(xlims_mediumzoom); ylim(xlims_mediumzoom);
him = imshow(imag(one_d_ft),[0 1]);
him.Parent.Position = [ 0.33 0 0.3 1];
text(256-56-64,256-56-32,['Im\{ $ ' label ' $ \}'],'Color','magenta','interpreter','latex');
xlim(xlims_mediumzoom); ylim(xlims_mediumzoom);
% Adjust upper color limit so you can see the white square
him = imshow(abs(one_d_ft).^2,[]);
him.Parent.Position = [0.67 0 0.3 1];
text(256-56-64,256-56-32,['$ | ' label ' |^2 $'],'Color','magenta','interpreter','latex');
xlim(xlims_mediumzoom); ylim(xlims_mediumzoom);
The z-profile of
is a slice of this one-dimensional Fourier Transform of 
figure; imshowpair(abs(one_d_ft).^2,L_hat_shifted);
xlim(xlims_mediumzoom); ylim(xlims_mediumzoom);
To see this, let the 1-D function 
g_a = one_d_ft(:,a+center);
label = '\mathcal{F}_{x''} \left\{ F(x'',z) \right\}(a,z)';
ylim(xlims_mediumzoom-center);
xlabel(['Re\{$ ' label ' $\}'],'interpreter','latex');
ylim(xlims_mediumzoom-center);
xlabel(['Im\{$ ' label ' $\}'],'interpreter','latex');
ylim(xlims_mediumzoom-center);
xlabel(['$ |' label '|^2 $'],'interpreter','latex');
Q_a_from_FT = repmat(g_a,1,512);
figure; imshow(real(Q_a_from_FT),[]);
xlim(xlims_highzoom); ylim(xlims_highzoom);
T_a_from_FT = complex_exp.*Q_a_from_FT;
figure; imshow(real(T_a_from_FT),[]);
xlim(xlims_highzoom); ylim(xlims_highzoom);
figure; imshow(abs(T_a_from_FT).^2,[]);
xlim(xlims_highzoom); ylim(xlims_highzoom);
Now that we have followed each instaneous
through the manipulations, we now consider the summation over "a". one_d_ft_projection = sum(abs(one_d_ft).^2,2);
plot(one_d_ft_projection,z);
ylim(xlims_highzoom-center);
semilogx(mat2gray(one_d_ft_projection)+1e-5,z);
ylim(xlims_highzoom-center);
one_d_ft_projection = repmat(one_d_ft_projection,1,512)/N;
imshow(one_d_ft_projection,[]);
xlim(xlims_highzoom); ylim(xlims_highzoom);
Equation 9

Finally we use Parserval's theorem to equate the sum of the square modulus of the 1-D Fourier transform of the sequence with the sum of the square modulus of the original electric field produced by the mask. The sum of the square modulus of the electric field is a projection in the x' direction. This projection is created by the conventional manner of scanning a beam across a field to create a lightsheet.
F_projection = sum(abs(F).^2,2)/N;
ylim(xlims_highzoom-center);
semilogx(mat2gray(F_projection)+1e-5,z);
ylim(xlims_highzoom-center);
F_projection = repmat(F_projection,1,512);
figure; imshow(F_projection,[]);
xlim(xlims_highzoom); ylim(xlims_highzoom);
% Is F_projection == fsGeneratedField ?
rmsDiff = sqrt(mean(abs(F_projection(:)-fsGeneratedField(:)).^2))
We have thus proved the Field Synthesis theorem.
+
\ No newline at end of file
diff --git a/2019-chang-field-synthesis/FieldSynthesis/FieldSynthesisProofIllustration.m b/2019-chang-field-synthesis/FieldSynthesis/FieldSynthesisProofIllustration.m
new file mode 100644
index 0000000..ac9d17e
--- /dev/null
+++ b/2019-chang-field-synthesis/FieldSynthesis/FieldSynthesisProofIllustration.m
@@ -0,0 +1,588 @@
+%% Field Synthesis Proof Illustration Live Script
+% Supplementary Material to:
+%
+% *Universal Light-Sheet Generation with Field Synthesis*
+%
+% Bo-Jui Chang, Mark Kittisopikul, Kevin M. Dean, Phillipe Roudot, Erik Welf
+% and Reto Fiolka.
+%% Field Synthesis Theorem for an Ideal Line Scan
+% We want to prove that the sum of the intensity of individual line scans produces
+% a light-sheet illumination pattern equivalent to the average intensity created
+% by a scanned light-sheet.
+%
+% Let F(x,z) describe the electric field produced by illuminating the entire
+% mask in the back pupil plane. $\hat{F}(k_x,k_z)$ represents the mask at the
+% back pupil plane, the Fourier transform of the electric field.
+%
+% An individual line scan is represented by the function $T_{a\;} \left(x,z\right)$
+% and has a Fourier transform $\hat{T}_a(k_x,k_z) = \hat{F}(k_x,k_z)\delta(k_x
+% -a)$.
+%
+% The intensity of the illumination is represented by the square modulus
+% ${\left|\cdot \;\right|}^{2\;}$. The intensity created by illuminating the entire
+% annular mask is $\left| F(x,z) \right| ^2$. The intensity of an individual line
+% scan is $\left| T_a(x,z) \right| ^2$.
+%
+% A sum of the intensity of individual line scans can be expressed as $\sum_a
+% \left| T_a(x,z) \right|^2$.
+%
+% An scanned light sheet has a z-profile equivalent to the average of then
+% intensity of F(x,z) over the x-dimension: $\frac{1}{N} \sum_{x'} \left|F(x',z)
+% \right|^2$ .
+%
+% Thus we want to prove that $\sum_a \left|T_a(x,z) \right|^2 = \frac{1}{N}
+% \sum_{x'} \left| F(x',z) \right|^2$
+%% Setup
+%%
+N = 512;
+center = floor(N/2+1);
+
+% Annulus mask at the back focal plane
+F_hat = createAnnulus(N, (82+88)/2, 10);
+F_hat = imgaussfilt(double(F_hat),0.5);
+
+% Delta function representing the line scan
+L_hat = zeros(N);
+L_hat(:,center) = 1;
+
+% Position of the line scan for demonstration
+a = -57;
+
+% x and z coordinates
+x = ceil(-N/2):floor(N/2-1);
+z = x;
+
+
+% Zoom levels
+% 64x64 zoom level
+xlims_highzoom = [-1 1]*64+center;
+ylims_highzoom = [-1 1]*64+center;
+
+% 128x128 zoom level
+xlims_mediumzoom = [-1 1]*128+center;
+ylims_mediumzoom = [-1 1]*128+center;
+
+% Utility function to do shifts from back focal plane to object plane
+% Note that the shifts are necessary to have the coefficients where fftw
+% will expect them
+% 0.1 Shift the frequency space representation so the zeroth frequency is at
+% matrix index (1,1)
+% 0.2 Perform a 2-D inverse Fourier Transform
+% 0.3 Shift the object space representation so that "center" is located
+% in the center of the image
+doInverse2DFourierTransformWithShifts = @(X) fftshift( ifft2( ifftshift(X) ) );
+%% Definition of $\hat{T}_a$, frequency space presentation of each line scan in the back focal plane
+% We first start at the back pupil plane where we multiply a ring by a line
+% on a pixel-by-pixel basis.
+%
+% $$\hat{T_a}(k_x,k_z) = \hat{F}(k_x,k_z)\delta(k_x-a)$$
+
+% Calculate T_a_hat
+
+L_hat_shifted = circshift(L_hat,[0 a]);
+T_a_hat = F_hat.*L_hat_shifted;
+
+figure('Position',[0 0 800 600]);
+
+
+% Green annulus only
+subplot(2,2,1); % Upper left corner
+him = imshowpair(F_hat,zeros(512));
+xlim(xlims_mediumzoom); ylim(ylims_mediumzoom);
+text(1,1,'F_hat','Color','green');
+
+
+% Delta magenta only
+subplot(2,2,2); % Upper right corner
+him = imshowpair(zeros(512),L_hat_shifted);
+xlim(xlims_mediumzoom); ylim(ylims_mediumzoom);
+
+% Green annulus, magenta delta
+subplot(2,2,3); % Lower left corner
+him = imshowpair(F_hat,L_hat_shifted);
+xlim(xlims_mediumzoom); ylim(ylims_mediumzoom);
+
+% White overlap only
+subplot(2,2,4); % Lower right corner
+him = imshow(T_a_hat,[]);
+xlim(xlims_mediumzoom); ylim(ylims_mediumzoom);
+%% Equation 1
+% $$\sum_a |T_a(x,z)|^2 = \sum_a | \mathcal{F}^{-1} \left\{ \hat{T}_a(k_x,k_z)
+% \right\}(x,z) |^2$$
+%
+% In equation 1, we state the inverse 2-D Fourier transform relationship
+% between the electric field of an instaneous line scan, $T_a(x,z)$.
+
+% Save our example "a" for later use
+a_selected = a;
+T_a_hat_selected = T_a_hat;
+L_hat_shifted_selected = L_hat_shifted;
+
+a_sequence = -256:255;
+fsGeneratedField = zeros(N);
+for a = a_sequence
+ L_hat_shifted = circshift(L_hat,[0 a]);
+ T_a_hat = F_hat.*L_hat_shifted;
+ % 1.1 Shift the frequency space representation so the zeroth frequency is
+ % at matrix index (1,1)
+ % 1.2 Perform a 2-D inverse Fourier Transform
+ T_a = ifft2(ifftshift(T_a_hat));
+ fsGeneratedField = fsGeneratedField + abs(T_a).^2;
+end
+
+% 1.3 Shift the object space representation so that "center" is located
+% in the center of the image
+fsGeneratedField = fftshift(fsGeneratedField);
+
+figure;
+imshow(fsGeneratedField,[]);
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+fsGeneratedFieldSlice = fsGeneratedField(:,center);
+
+figure;
+subplot(1,2,1);
+plot(fsGeneratedFieldSlice,z);
+grid on;
+ylim(xlims_highzoom-center);
+
+subplot(1,2,2);
+semilogx(mat2gray(fsGeneratedFieldSlice)+1e-5,z);
+grid on;
+ylim(xlims_highzoom-center);
+
+
+% Restore our example "a"
+a = a_selected;
+T_a_hat = T_a_hat_selected;
+L_hat_shifted = L_hat_shifted_selected;
+
+%% Equation 2
+% In equation 2, we substitute in the frequency space representation at the
+% back focal plane which we just defined above.
+%
+% $$\sum_a |T_a(x,z)|^2 = \sum_a | \mathcal{F}^{-1} \left\{ \hat{F}(k_x,k_z)\delta(k_x-a)
+% \right\}(x,z) |^2$$
+%
+% Note that because $\hat{T}_a$ is not conjugate symmetric, $\hat{T}_a(k_x,k_z)
+% \neq \hat{T}_a^*(-k_x,-k_z)$, the range of$T_a$ is complex valued.
+%
+% To illustrate this we will focus on a single instaneous line scan at "a".
+% Change the variable "a" above to view another slice.
+
+% 2.1 Shift the frequency space representation so the zeroth frequency
+% is at matrix index (1,1)
+% 2.2 Perform a 2-D inverse Fourier Transform
+T_a = ifft2(ifftshift(T_a_hat));
+% 2.3 Shift the object space representation so that "center" is located
+% in the center of the image
+T_a = fftshift(T_a);
+% Subsequent inverse Fourier Transforms will use
+% doInverse2DFourierTransformWithShifts as defined in setup
+% T_a = doInverse2DFourierTransformWithShifts(T_a_hat);
+
+figure;
+subplot(1,3,1);
+him = imshow(real(T_a),[]);
+him.Parent.Position = [0 0 0.3 1];
+text(256-56,256-56,'Real\{ T_a \}','Color','green');
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+
+subplot(1,3,2);
+him = imshow(imag(T_a),[]);
+him.Parent.Position = [ 0.33 0 0.3 1];
+text(256-56,256-56,'Imaginary\{ T_a \}','Color','green');
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+
+subplot(1,3,3);
+him = imshow(abs(T_a).^2,[]);
+him.Parent.Position = [0.67 0 0.3 1];
+text(256-56,256-56,'Square Magnitude\{ T_a \}','Color','green');
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+%% Equation 3
+% $$\sum_a |T_a(x,z)|^2 = \sum_a | \mathcal{F}^{-1} \left\{ \hat{F}(k_x,k_z)
+% \right\} ** \mathcal{F}^{-1} \left\{\delta(k_x-a) \right\}(x,z) |^2$$
+%
+% Next we apply the the 2-D Convolution Theorem to observe that $T_a$ is
+% the 2-D convolution of the inverse Fourier Transform of each term.
+
+F = doInverse2DFourierTransformWithShifts(F_hat);
+
+figure;
+subplot(1,3,1);
+him = imshow(real(F),[]);
+him.Parent.Position = [0 0 0.3 1];
+text(256-56,256-56,'Real\{ F \}','Color','green');
+% colormap(gca,hot);
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+
+
+subplot(1,3,2);
+him = imshow(imag(F),[0 1]);
+him.Parent.Position = [ 0.33 0 0.3 1];
+% colormap(gca,hot);
+text(256-56,256-56,'Imaginary\{ F \}','Color','green');
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+
+
+subplot(1,3,3);
+him = imshow(abs(F).^2,[]);
+him.Parent.Position = [0.67 0 0.3 1];
+text(256-56,256-56,'| F |^2','Color','green');
+% colormap(gca,hot);
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+L_shifted = doInverse2DFourierTransformWithShifts(L_hat_shifted);
+
+figure;
+subplot(1,3,1);
+him = imshow(real(L_shifted),[]);
+him.Parent.Position = [0 0 0.3 1];
+text(256-56,256-56,'Real\{ L\_shifted \}','Color','green','interpreter','tex');
+% colormap(gca,hot);
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+
+
+subplot(1,3,2);
+him = imshow(imag(L_shifted),[]);
+him.Parent.Position = [ 0.33 0 0.3 1];
+% colormap(gca,hot);
+text(256-56,256-56,'Imaginary\{ L\_shifted \}','Color','green');
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+
+
+subplot(1,3,3);
+him = imshow(abs(L_shifted).^2,[]);
+him.Parent.Position = [0.67 0 0.3 1];
+text(256-56,256-56,'| L\_shifted |^2','Color','green');
+colormap(gca,hot);
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+%%
+%
+
+T_a_by_conv = conv2(F,L_shifted,'same');
+
+figure;
+subplot(1,3,1);
+him = imshow(real(T_a_by_conv),[]);
+him.Parent.Position = [0 0 0.3 1];
+text(256-56,256-56,'Real\{ F ** L\_shifted \}','Color','green','interpreter','tex');
+% colormap(gca,hot);
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+
+
+subplot(1,3,2);
+him = imshow(imag(T_a_by_conv),[]);
+him.Parent.Position = [ 0.33 0 0.3 1];
+% colormap(gca,hot);
+text(256-56,256-56,'Imaginary\{ F ** L\_shifted \}','Color','green');
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+
+
+subplot(1,3,3);
+him = imshow(abs(T_a_by_conv).^2,[]);
+him.Parent.Position = [0.67 0 0.3 1];
+text(256-56,256-56,'| F ** L\_shifted |^2','Color','green');
+% colormap(gca,hot);
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+%% Equation 4
+% $$\sum_a |T_a(x,z)|^2 = \sum_a \left|F(x,z) ** \frac{1}{N}\delta(z)\exp\left(\frac{2\pi
+% i x a}{N} \right) \right|^2$$
+%
+% The inverse 2-D Fourier Transform of $\delta(k_x-a)$is $\frac{1}{N}\delta(z)\exp
+% \left( \frac{2\pi i x a }{N} \right) $. Below we illustrate that the product
+% of the complex exponential and $\delta(z)$ is the same as $\mathcal{F}^{-1}\{
+% \delta(k_x-a) \}$.
+
+delta_z = zeros(512);
+delta_z(center,:) = 1/N;
+
+complex_exp = exp(2*pi*1i*x*a/N);
+
+figure;
+subplot(3,1,1)
+plot(real(complex_exp));
+xlim(xlims_highzoom);
+xlabel('x');
+ylabel('Real\{ $ \exp(\frac{2 \pi i x a }{ N}) $ \}','interpreter','latex');
+
+subplot(3,1,2);
+plot(imag(complex_exp));
+xlim(xlims_highzoom);
+xlabel('x');
+ylabel('Imag\{ $ \exp(\frac{2 \pi i x a }{ N}) $ \}','interpreter','latex');
+
+
+subplot(3,1,3);
+plot(abs(complex_exp).^2);
+xlim(xlims_highzoom);
+ylim([0 2]);
+xlabel('x');
+ylabel(' $ | \exp(\frac{2 \pi i x a }{ N}) |^2 $','interpreter','latex');
+
+
+
+complex_exp = repmat(complex_exp,512,1);
+L_shifted_by_product = delta_z.*complex_exp;
+
+label = '$ \frac{1}{N}\delta(z)\exp(\frac{2 \pi i x a }{ N}) $';
+
+figure;
+subplot(1,3,1);
+him = imshow(real(L_shifted_by_product),[]);
+him.Parent.Position = [0 0 0.3 1];
+text(256-56,256-56,['Re\{' label '\}'],'Color','green','interpreter','latex');
+% colormap(gca,hot);
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+
+
+subplot(1,3,2);
+him = imshow(imag(L_shifted_by_product),[]);
+him.Parent.Position = [ 0.33 0 0.3 1];
+% colormap(gca,hot);
+text(256-56,256-56,['Im\{' label '\}'],'Color','green','interpreter','latex');
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+
+
+subplot(1,3,3);
+him = imshow(abs(L_shifted_by_product).^2,[]);
+him.Parent.Position = [0.67 0 0.3 1];
+text(256-56,256-56,['$ | $ ' label ' $ |^2 $'],'Color','green','interpreter','latex');
+colormap(gca,hot);
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+
+%% Equation 5
+% $$\sum_a | T_a(x,z)|^2 = \sum_a \left|\sum_{x'}\sum_{z'} \frac{1}{N} \left[
+% F(x',z') \exp \left( \frac{2 \pi i (x-x') a}{N} \right) \delta(z-z') \right]
+% \right|^2$$
+%
+% Next, we can use the definition of 2-D convolution to expand out the expression
+% as two nested summations.
+
+hfig = figure('visible','on');
+him = imshow(zeros(N,N*2),[0 1]);
+cumulativeSum = zeros(N);
+% Technically, we are animated the commuted convolution here, which is equivalent
+% Only iterate over 3 rows of z for brevity
+for zp=((-1:1)*32)
+ for xp=x
+ F_shifted = circshift(F,[zp xp]).* complex_exp(center,xp+center);
+ cumulativeSum = cumulativeSum + F_shifted.*(zp == 0);
+ him.CData = [mat2gray(abs(F_shifted).^2) mat2gray(abs(cumulativeSum).^2)];
+ drawnow;
+ end
+end
+xlim(xlims_highzoom+N); ylim(xlims_highzoom);
+%%
+% The above is an animation. Run this section to see it. In a static document
+% like a PDF, only the last frame will be shown. The cumulative sum also retains
+% its complex character as is shown in the illustration of its real component.
+
+figure; imshow(real(cumulativeSum),[]);
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+%% Equation 6
+% $$\sum_a | T_a(x,z)|^2 = \frac{1}{N^2} \sum_a \left| \exp \left( \frac{2 \pi
+% i x a}{N} \right) \sum_{x'} \left[ F(x',z') \exp \left( -\frac{2 \pi i x'
+% a}{N} \right) \right] \right|^2$$
+%
+% Because of the 1-D delta function $\delta(z-z')$in the summation, we only
+% need to perform the summation over x, the middle row. Only the term when $z'
+% = z$ survives.
+
+hfig = figure('visible','on');
+him = imshow(zeros(N,N*2),[0 1]);
+cumulativeSum = zeros(N);
+% Technically, we are animated the commuted convolution here, which is equivalent
+% We only iterate over on row
+for xp=x
+ F_shifted = circshift(F.*conj(complex_exp),[0 xp]); %exp(2*pi*1i*xp*a/N);
+ cumulativeSum = cumulativeSum + F_shifted;
+ him.CData = [mat2gray(abs(F_shifted).^2) mat2gray(abs(complex_exp.*cumulativeSum).^2)];
+ drawnow;
+end
+xlim(xlims_highzoom+N); ylim(xlims_highzoom);
+%%
+% Note that the variable cumulativeSum now differs from $T_a$. Let's call
+% that field $Q_a$and observe it is real valued.
+%
+% $$Q_a(x,z)= \sum_{x'} \left[ F(x',z') \exp \left( -\frac{2 \pi i x' a}{N}
+% \right) \right]$$
+%
+% $$T_a(x,z) = \exp \left( \frac{2 \pi i x a}{N} \right) Q_a(x,z)$$
+
+Q_a = cumulativeSum;
+
+figure; imshow(real(complex_exp.*Q_a),[]);
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+figure; imshow(real(Q_a),[]);
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+% Note that Q_a is real valued!
+figure; imshow(imag(Q_a),[0 1]);
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+%% Equation 7
+% $$\sum_a | T_a(x,z)|^2 = \frac{1}{N^2} \sum_a \left| \exp \left( \frac{2 \pi
+% i (x) a}{N} \right) \right|^2 \left| \sum_{x'} \left[ F(x',z') \exp \left(
+% -\frac{2 \pi i x' a}{N} \right) \right] \right|^2$$
+%
+% The multiplicative property of the complex modulus allows us to factor
+% out the square modulus of the first complex exponential. The square modulus
+% of that complex exponential is unity, 1, everywhere.
+
+label = '\exp(\frac{2 \pi i x a }{ N})';
+
+figure;
+subplot(1,3,1);
+him = imshow(real(complex_exp),[]);
+him.Parent.Position = [0 0 0.3 1];
+text(256-56,256-56,['Re\{ $' label '$ \}'], ...
+ 'BackgroundColor',[0.9 0.9 0.9],'Color','magenta','interpreter','latex');
+% colormap(gca,hot);
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+
+
+subplot(1,3,2);
+him = imshow(imag(complex_exp),[]);
+him.Parent.Position = [ 0.33 0 0.3 1];
+% colormap(gca,hot);
+text(256-56,256-56,['Im\{ $' label '$ \}'], ...
+ 'BackgroundColor',[0.9 0.9 0.9],'Color','magenta','interpreter','latex');
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+
+
+subplot(1,3,3);
+% Adjust upper color limit so you can see the white square
+him = imshow(abs(complex_exp).^2,[0 1.1]);
+him.Parent.Position = [0.67 0 0.3 1];
+text(256-56,256-56,['$ | ' label ' |^2 $'], ...
+ 'BackgroundColor',[0.9 0.9 0.9],'Color','black','interpreter','latex');
+% colormap(gca,hot);
+% colorbar;
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+%% Equation 8
+% $$\sum_a | T_a(x,z)|^2 = \frac{1}{N^2} \sum_a \left| \mathcal{F}_{x'} \left\{
+% F(x',z) \right\}(a,z) \right|^2$$
+%
+% We can simplify the expression further using the definition of the 1-D
+% Fourier Transform with respect to $x'$. Note that this creates a field where
+% the x-dimension is frequency space and the z-dimension is in object space.
+
+one_d_ft = fftshift(fft(ifftshift(F,2),[],2),2);
+label = '\mathcal{F}_{x''} \left\{ F(x'',z) \right\}(k_x,z)';
+
+figure;
+subplot(1,3,1);
+him = imshow(real(one_d_ft),[]);
+him.Parent.Position = [0 0 0.3 1];
+text(256-56-64,256-56-32,['Re\{ $ ' label ' $ \}'],'Color','magenta','interpreter','latex');
+% colormap(gca,hot);
+xlim(xlims_mediumzoom); ylim(xlims_mediumzoom);
+
+
+subplot(1,3,2);
+him = imshow(imag(one_d_ft),[0 1]);
+him.Parent.Position = [ 0.33 0 0.3 1];
+% colormap(gca,hot);
+text(256-56-64,256-56-32,['Im\{ $ ' label ' $ \}'],'Color','magenta','interpreter','latex');
+xlim(xlims_mediumzoom); ylim(xlims_mediumzoom);
+
+
+subplot(1,3,3);
+% Adjust upper color limit so you can see the white square
+him = imshow(abs(one_d_ft).^2,[]);
+him.Parent.Position = [0.67 0 0.3 1];
+text(256-56-64,256-56-32,['$ | ' label ' |^2 $'],'Color','magenta','interpreter','latex');
+% colormap(gca,hot);
+% colorbar;
+xlim(xlims_mediumzoom); ylim(xlims_mediumzoom);
+%%
+% The z-profile of $|T_a(x,z)|^2 \mbox{ and } |Q_a(x,z)|^2$ is a slice of
+% this one-dimensional Fourier Transform of $F(x,z), |\mathcal{F}_{x'} \{F(x',z)
+% \}(a,z)|^2$
+
+figure; imshowpair(abs(one_d_ft).^2,L_hat_shifted);
+xlim(xlims_mediumzoom); ylim(xlims_mediumzoom);
+%%
+% To see this, let the 1-D function $g_a(z) = \mathcal{F}_{x'} \{F(x',z)
+% \}(a,z)$
+
+z = x;
+g_a = one_d_ft(:,a+center);
+label = '\mathcal{F}_{x''} \left\{ F(x'',z) \right\}(a,z)';
+figure;
+subplot(1,3,1);
+plot(real(g_a),z);
+xl = xlim;
+ylim(xlims_mediumzoom-center);
+ylabel('z');
+xlabel(['Re\{$ ' label ' $\}'],'interpreter','latex');
+
+subplot(1,3,2);
+plot(imag(g_a),z);
+xlim(xl);
+ylim(xlims_mediumzoom-center);
+ylabel('z');
+xlabel(['Im\{$ ' label ' $\}'],'interpreter','latex');
+
+
+subplot(1,3,3);
+plot(abs(g_a).^2,z);
+ylim(xlims_mediumzoom-center);
+ylabel('z');
+xlabel(['$ |' label '|^2 $'],'interpreter','latex');
+Q_a_from_FT = repmat(g_a,1,512);
+
+figure; imshow(real(Q_a_from_FT),[]);
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+T_a_from_FT = complex_exp.*Q_a_from_FT;
+figure; imshow(real(T_a_from_FT),[]);
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+figure; imshow(abs(T_a_from_FT).^2,[]);
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+%%
+% Now that we have followed each instaneous $T_a(x,z) \mbox{ and then }
+% Q_a(x,z)$ through the manipulations, we now consider the summation over "a".
+
+one_d_ft_projection = sum(abs(one_d_ft).^2,2);
+
+figure;
+subplot(1,2,1);
+plot(one_d_ft_projection,z);
+grid on;
+ylim(xlims_highzoom-center);
+
+subplot(1,2,2);
+semilogx(mat2gray(one_d_ft_projection)+1e-5,z);
+grid on;
+ylim(xlims_highzoom-center);
+one_d_ft_projection = repmat(one_d_ft_projection,1,512)/N;
+
+figure;
+imshow(one_d_ft_projection,[]);
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+%% Equation 9
+%% $$\sum_a | T_a(x,z)|^2 = \frac{1}{N} \sum_{x'} | F(x',z)|^2$$
+% Finally we use Parserval's theorem to equate the sum of the square modulus
+% of the 1-D Fourier transform of the sequence with the sum of the square modulus
+% of the original electric field produced by the mask. The sum of the square modulus
+% of the electric field is a projection in the x' direction. This projection is
+% created by the conventional manner of scanning a beam across a field to create
+% a lightsheet.
+
+F_projection = sum(abs(F).^2,2)/N;
+
+figure;
+subplot(1,2,1);
+plot(F_projection,z);
+grid on;
+ylim(xlims_highzoom-center);
+
+subplot(1,2,2);
+semilogx(mat2gray(F_projection)+1e-5,z);
+grid on;
+ylim(xlims_highzoom-center);
+
+F_projection = repmat(F_projection,1,512);
+figure; imshow(F_projection,[]);
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+% Is F_projection == fsGeneratedField ?
+rmsDiff = sqrt(mean(abs(F_projection(:)-fsGeneratedField(:)).^2))
+%%
+% We have thus proved the Field Synthesis theorem.
\ No newline at end of file
diff --git a/2019-chang-field-synthesis/FieldSynthesis/FieldSynthesisProofIllustration.mlx b/2019-chang-field-synthesis/FieldSynthesis/FieldSynthesisProofIllustration.mlx
new file mode 100644
index 0000000..4c99725
Binary files /dev/null and b/2019-chang-field-synthesis/FieldSynthesis/FieldSynthesisProofIllustration.mlx differ
diff --git a/2019-chang-field-synthesis/FieldSynthesis/FieldSynthesisProofIllustrationNonIdeal.html b/2019-chang-field-synthesis/FieldSynthesis/FieldSynthesisProofIllustrationNonIdeal.html
new file mode 100644
index 0000000..626778b
--- /dev/null
+++ b/2019-chang-field-synthesis/FieldSynthesis/FieldSynthesisProofIllustrationNonIdeal.html
@@ -0,0 +1,682 @@
+
+Field Synthesis Proof Illustration Live ScriptField Synthesis Proof Illustration Live Script
Supplementary Material to:
Universal Light-Sheet Generation with Field Synthesis
Bo-Jui Chang, Mark Kittisopikul, Kevin M. Dean, Phillipe Roudot, Erik Welf and Reto Fiolka.
Field Synthesis Theorem for a Non-Ideal Line Scan
We want to prove that the sum of the intensity of individual line scans produces a light-sheet illumination pattern equivalent to the intensity created by a scanned light-sheet using a intensity scan profile of
in the x-dimension. Let F(x,z) describe the electric field produced by illuminating the entire mask in the back pupil plane.
represents the mask at the back pupil plane, the Fourier transform of the electric field. An individual line scan is represented by the function
and has a Fourier transform
.
represents the profile of the line scan at the back focal plane and in the ideal case is
, an infinitely thin line. In the non-ideal case,
is an arbitrary line profile. It could be a Gaussian function or a sinc function for example.The intensity of the illumination is represented by the square modulus
. The intensity created by illumination the entire annular mask is
. The intensity of an individual line scan is
. A sum of the intensity of individual line scans can be expressed as
. An scanned light sheet is equivalent to the convolution of
and
over the x-dimension:
. This is expressed as a 2-D convolution to avoid confusion. Thus we want to prove that 
Setup
% Annulus mask at the back focal plane
F_hat = createAnnulus(N, (82+88)/2, 10);
F_hat = imgaussfilt(double(F_hat),0.5);
% Delta function representing the line scan
% Position of the line scan for demonstration
x = ceil(-N/2):floor(N/2-1);
L_hat = normpdf(x,0,L_sigma);
L_hat = repmat(L_hat,N,1);
xlims_highzoom = [-1 1]*64+center;
ylims_highzoom = [-1 1]*64+center;
xlims_mediumzoom = [-1 1]*128+center;
ylims_mediumzoom = [-1 1]*128+center;
% Utility function to do shifts from back focal plane to object plane
% Note that the shifts are necessary to have the coefficients where fftw
% 0.1 Shift the frequency space representation so the zeroth frequency is at
% 0.2 Perform a 2-D inverse Fourier Transform
% 0.3 Shift the object space representation so that "center" is located
% in the center of the image
doInverse2DFourierTransformWithShifts = @(X) fftshift( ifft2( ifftshift(X) ) );
Definition of
, frequency space presentation of each line scan in the back focal plane
We first start at the back pupil plane where we multiply a ring by a line on a pixel-by-pixel basis.
L_hat_shifted = circshift(L_hat,[0 a]);
T_a_hat = F_hat.*L_hat_shifted;
subplot(2,2,1); % Upper left corner
him = imshowpair(F_hat,zeros(512));
xlim(xlims_mediumzoom); ylim(ylims_mediumzoom);
text(1,1,'F_hat','Color','green');
subplot(2,2,2); % Upper right corner
him = imshowpair(zeros(512),L_hat_shifted);
xlim(xlims_mediumzoom); ylim(ylims_mediumzoom);
% Green annulus, magenta delta
subplot(2,2,3); % Lower left corner
him = imshowpair(F_hat,L_hat_shifted);
xlim(xlims_mediumzoom); ylim(ylims_mediumzoom);
subplot(2,2,4); % Lower right corner
him = imshow(T_a_hat,[]);
xlim(xlims_mediumzoom); ylim(ylims_mediumzoom);
Equation 10
In equation 10, we state the inverse 2-D Fourier transform relationship between the electric field of an instaneous line scan,
. % Save our example "a" for later use
T_a_hat_selected = T_a_hat;
L_hat_shifted_selected = L_hat_shifted;
fsGeneratedField = zeros(N);
L_hat_shifted = circshift(L_hat,[0 a]);
T_a_hat = F_hat.*L_hat_shifted;
% 1.1 Shift the frequency space representation so the zeroth frequency is
% 1.2 Perform a 2-D inverse Fourier Transform
T_a = ifft2(ifftshift(T_a_hat));
fsGeneratedField = fsGeneratedField + abs(T_a).^2;
% 1.3 Shift the object space representation so that "center" is located
% in the center of the image
fsGeneratedField = fftshift(fsGeneratedField);
imshow(fsGeneratedField,[]);
xlim(xlims_highzoom); ylim(xlims_highzoom);
fsGeneratedFieldSlice = fsGeneratedField(:,center);
plot(fsGeneratedFieldSlice,z);
ylim(xlims_highzoom-center);
semilogx(mat2gray(fsGeneratedFieldSlice)+1e-5,z);
ylim(xlims_highzoom-center);
% Restore our example "a"
T_a_hat = T_a_hat_selected;
L_hat_shifted = L_hat_shifted_selected;
Equation 11
In equation 11, we substitute in the frequency space representation at the back focal plane which we just defined above.
Note that because
is not conjugate symmetric,
, the range of
is complex valued. To illustrate this we will focus on a single instaneous line scan at "a". Change the variable "a" above to view another slice.
% 2.1 Shift the frequency space representation so the zeroth frequency
% is at matrix index (1,1)
% 2.2 Perform a 2-D inverse Fourier Transform
T_a = ifft2(ifftshift(T_a_hat));
% 2.3 Shift the object space representation so that "center" is located
% in the center of the image
% Subsequent inverse Fourier Transforms will use
% doInverse2DFourierTransformWithShifts as defined in setup
% T_a = doInverse2DFourierTransformWithShifts(T_a_hat);
him = imshow(real(T_a),[]);
him.Parent.Position = [0 0 0.3 1];
text(50,50,'Real\{ T_a \}','Color','green');
xlim(xlims_highzoom); ylim(xlims_highzoom);
him = imshow(imag(T_a),[]);
him.Parent.Position = [ 0.33 0 0.3 1];
text(50,50,'Imaginary\{ T_a \}','Color','green');
xlim(xlims_highzoom); ylim(xlims_highzoom);
him = imshow(abs(T_a).^2,[]);
him.Parent.Position = [0.67 0 0.3 1];
text(50,50,'Square Magnitude\{ T_a \}','Color','green');
xlim(xlims_highzoom); ylim(xlims_highzoom);
Equation 12
Next we apply the the 2-D Convolution Theorem to observe that
is the 2-D convolution of the inverse Fourier Transform of each term. F = doInverse2DFourierTransformWithShifts(F_hat);
him = imshow(real(F),[]);
him.Parent.Position = [0 0 0.3 1];
text(50,50,'Real\{ F \}','Color','green');
xlim(xlims_highzoom); ylim(xlims_highzoom);
him = imshow(imag(F),[0 1]);
him.Parent.Position = [ 0.33 0 0.3 1];
text(50,50,'Imaginary\{ F \}','Color','green');
xlim(xlims_highzoom); ylim(xlims_highzoom);
him = imshow(abs(F).^2,[]);
him.Parent.Position = [0.67 0 0.3 1];
text(50,50,'| F |^2','Color','green');
xlim(xlims_highzoom); ylim(xlims_highzoom);
L_shifted_times_delta_z = doInverse2DFourierTransformWithShifts(L_hat_shifted);
him = imshow(real(L_shifted_times_delta_z),[]);
him.Parent.Position = [0 0 0.3 1];
text(256-56,256-56,'Real\{ L\_shifted \}','Color','green','interpreter','tex');
xlim(xlims_highzoom); ylim(xlims_highzoom);
him = imshow(imag(L_shifted_times_delta_z),[]);
him.Parent.Position = [ 0.33 0 0.3 1];
text(256-56,256-56,'Imaginary\{ L\_shifted \}','Color','green');
xlim(xlims_highzoom); ylim(xlims_highzoom);
him = imshow(abs(L_shifted_times_delta_z).^2,[]);
him.Parent.Position = [0.67 0 0.3 1];
text(256-56,256-56,'| L\_shifted |^2','Color','green');
xlim(xlims_highzoom); ylim(xlims_highzoom);
T_a_by_conv = conv2(F,L_shifted_times_delta_z,'same');
him = imshow(real(T_a_by_conv),[]);
him.Parent.Position = [0 0 0.3 1];
text(256-56,256-56,'Real\{ F ** L\_shifted \}','Color','green','interpreter','tex');
xlim(xlims_highzoom); ylim(xlims_highzoom);
him = imshow(imag(T_a_by_conv),[]);
him.Parent.Position = [ 0.33 0 0.3 1];
text(256-56,256-56,'Imaginary\{ F ** L\_shifted \}','Color','green');
xlim(xlims_highzoom); ylim(xlims_highzoom);
him = imshow(abs(T_a_by_conv).^2,[]);
him.Parent.Position = [0.67 0 0.3 1];
text(256-56,256-56,'| F ** L\_shifted |^2','Color','green');
xlim(xlims_highzoom); ylim(xlims_highzoom);
Equation 13
The inverse 2-D Fourier Transform of
is
. Below we illustrate that the product of the complex exponential and
is the same as
. % delta_z(center,:) = 1/N;
L_times_delta_z = doInverse2DFourierTransformWithShifts(L_hat);
complex_exp = exp(2*pi*1i*x*a/N);
ylabel('Real\{ $ \exp(\frac{2 \pi i x a }{ N}) $ \}','interpreter','latex');
ylabel('Imag\{ $ \exp(\frac{2 \pi i x a }{ N}) $ \}','interpreter','latex');
plot(abs(complex_exp).^2);
ylabel(' $ | \exp(\frac{2 \pi i x a }{ N}) |^2 $','interpreter','latex');
complex_exp = repmat(complex_exp,512,1);
L_shifted_by_product = L_times_delta_z.*complex_exp;
label = '$ \frac{1}{N}\delta(z)L(x)\exp(\frac{2 \pi i x a }{ N}) $';
him = imshow(real(L_shifted_by_product),[]);
him.Parent.Position = [0 0 0.3 1];
text(256-56,256-56,['Re\{' label '\}'],'Color','green','interpreter','latex');
xlim(xlims_highzoom); ylim(xlims_highzoom);
him = imshow(imag(L_shifted_by_product),[]);
him.Parent.Position = [ 0.33 0 0.3 1];
text(256-56,256-56,['Im\{' label '\}'],'Color','green','interpreter','latex');
xlim(xlims_highzoom); ylim(xlims_highzoom);
him = imshow(abs(L_shifted_by_product).^2,[]);
him.Parent.Position = [0.67 0 0.3 1];
text(256-56,256-56,['$ | $ ' label ' $ |^2 $'],'Color','green','interpreter','latex');
xlim(xlims_highzoom); ylim(xlims_highzoom);
Equation 14
Next, we can use the definition of 2-D convolution to expand out the expression as two nested summations.
hfig = figure('visible','on');
him = imshow(zeros(N,N*2),[0 1]);
cumulativeSum = zeros(N);
% Technically, we are animated the commuted convolution here, which is equivalent
% Only iterate over 3 rows of z for brevity
F_shifted = circshift(F,[zp xp]).* complex_exp(center,xp+center);
cumulativeSum = cumulativeSum + F_shifted.*L_times_delta_z(zp+center,xp+center);
him.CData = [mat2gray(abs(F_shifted).^2) mat2gray(abs(cumulativeSum).^2)];
xlim(xlims_highzoom+N); ylim(xlims_highzoom);
The above is an animation. Run this section to see it. In a static document like a PDF, only the last frame will be shown. The cumulative sum also retains its complex character as is shown in the illustration of its real component.
figure; imshow(real(cumulativeSum),[]);
xlim(xlims_highzoom); ylim(xlims_highzoom);
Equation 15
Because of the 1-D delta function
in the summation, we only need to perform the summation over x, the middle row. Only the term when
survives. hfig = figure('visible','on');
him = imshow(zeros(N,N*2),[0 1]);
cumulativeSum = zeros(N);
% Technically, we are animated the commuted convolution here, which is equivalent
% We only iterate over on row
F_shifted = circshift(F.*conj(complex_exp),[0 xp]); %exp(2*pi*1i*xp*a/N);
cumulativeSum = cumulativeSum + F_shifted.*L_times_delta_z(zp+center,xp+center);
him.CData = [mat2gray(abs(F_shifted).^2) mat2gray(abs(complex_exp.*cumulativeSum).^2)];
xlim(xlims_highzoom+N); ylim(xlims_highzoom);
Note that the variable cumulativeSum now differs from
. Let's call that field
and observe it is real valued. figure; imshow(real(complex_exp.*Q_a),[]);
xlim(xlims_highzoom); ylim(xlims_highzoom);
figure; imshow(real(Q_a),[]);
xlim(xlims_highzoom); ylim(xlims_highzoom);
% Note that Q_a is real valued!
figure; imshow(imag(Q_a),[0 1]);
xlim(xlims_highzoom); ylim(xlims_highzoom);
Equation 16
The multiplicative property of the complex modulus allows us to factor out the square modulus of the first complex exponential. The square modulus of that complex exponential is unity, 1, everywhere.
label = '\exp(\frac{2 \pi i x a }{ N})';
him = imshow(real(complex_exp),[]);
him.Parent.Position = [0 0 0.3 1];
text(256-56,256-56,['Re\{ $' label '$ \}'], ...
'BackgroundColor',[0.9 0.9 0.9],'Color','magenta','interpreter','latex');
xlim(xlims_highzoom); ylim(xlims_highzoom);
him = imshow(imag(complex_exp),[]);
him.Parent.Position = [ 0.33 0 0.3 1];
text(256-56,256-56,['Im\{ $' label '$ \}'], ...
'BackgroundColor',[0.9 0.9 0.9],'Color','magenta','interpreter','latex');
xlim(xlims_highzoom); ylim(xlims_highzoom);
% Adjust upper color limit so you can see the white square
him = imshow(abs(complex_exp).^2,[0 1.1]);
him.Parent.Position = [0.67 0 0.3 1];
text(256-56,256-56,['$ | ' label ' |^2 $'], ...
'BackgroundColor',[0.9 0.9 0.9],'Color','black','interpreter','latex');
xlim(xlims_highzoom); ylim(xlims_highzoom);
Equation 17
We can simplify the expression further using the definition of the 1-D Fourier Transform with respect to
. Note that this creates a field where the x-dimension is frequency space and the z-dimension is in object space. In this non-ideal case, there is now some variation in the x-dimension as seen in the
term of
. For illustrative purposes, we will focus on the
central slice in object space.
L_flipped = fliplr(L_times_delta_z);
if(mod(size(L_times_delta_z,2),2) == 2)
% If the dimension is even sized, we need to keep the center in the
% center by shifting the array over by one
L_flipped = circshift(L_flipped,[0 1]);
% L is only a function of x, and we do not need the \delta(z) now
L_flipped = repmat(L_flipped(center,:),N,1);
one_d_ft = fftshift(fft(ifftshift(F.*L_flipped,2),[],2),2);
label = '\mathcal{F}_{x''} \left\{ F(x'',z)L(-x'') \right\}(k_x,z)';
figure('Position',[0 0 800 600]);
him = imshow(real(one_d_ft),[]);
him.Parent.Position = [0 0 0.3 1];
text(256-56-64,256-56-32,['Re\{ $ ' label ' $ \}'],'Color','magenta','interpreter','latex');
xlim(xlims_mediumzoom); ylim(xlims_mediumzoom);
him = imshow(imag(one_d_ft),[0 1]);
him.Parent.Position = [ 0.33 0 0.3 1];
text(256-56-64,256-56-32,['Im\{ $ ' label ' $ \}'],'Color','magenta','interpreter','latex');
xlim(xlims_mediumzoom); ylim(xlims_mediumzoom);
% Adjust upper color limit so you can see the white square
him = imshow(abs(one_d_ft).^2,[]);
him.Parent.Position = [0.67 0 0.3 1];
text(256-56-64,256-56-32,['$ | ' label ' |^2 $'],'Color','magenta','interpreter','latex');
xlim(xlims_mediumzoom); ylim(xlims_mediumzoom);
The z-profile of
is a one-dimensional Fourier Transform of 
delta_shifted = zeros(size(L_hat));
delta_shifted(:,center+a) = 1;
figure; imshowpair(abs(one_d_ft).^2,delta_shifted);
xlim(xlims_mediumzoom); ylim(xlims_mediumzoom);
To see this, let the 1-D function 
g_a = one_d_ft(:,a+center);
label = '\mathcal{F}_{x''} \left\{ F(x'',z) \right\}(a,z)';
ylim(xlims_mediumzoom-center);
xlabel(['Re\{$ ' label ' $\}'],'interpreter','latex');
ylim(xlims_mediumzoom-center);
xlabel(['Im\{$ ' label ' $\}'],'interpreter','latex');
ylim(xlims_mediumzoom-center);
xlabel(['$ |' label '|^2 $'],'interpreter','latex');
Now that we have followed each instaneous
through the manipulations, we now consider the summation over "a". one_d_ft_projection = sum(abs(one_d_ft).^2,2);
plot(one_d_ft_projection,z);
ylim(xlims_highzoom-center);
semilogx(mat2gray(one_d_ft_projection)+1e-5,z);
ylim(xlims_highzoom-center);
Equation 18

We use Parserval's theorem to equate the sum of the square modulus of the 1-D Fourier transform of the sequence with the sum of the square modulus of the original electric field produced by the mask. The sum of the square modulus of the electric field is a projection in the x' direction. This projection is created by the conventional manner of scanning a beam across a field to create a lightsheet.
FL_projection = sum(abs(F.*L_flipped).^2,2)/N;
ylim(xlims_highzoom-center);
semilogx(mat2gray(FL_projection)+1e-5,z);
ylim(xlims_highzoom-center);
Equation 19
By the properties the complex square modulus, we can separately take the square modulus of the F and L portions of the summand.
FL_projection_split = sum(abs(F).^2.*abs(L_flipped).^2,2)/N;
plot(FL_projection_split,z);
ylim(xlims_highzoom-center);
semilogx(mat2gray(FL_projection_split)+1e-5,z);
ylim(xlims_highzoom-center);
Equation 20
Next we reintroduce the delta function in terms of z to restore the double summation. The reason for this is to convert the 1-D convolution in Equation 19 into a 2-D convolution in Equation 21.
Equation 21
linearConv = conv2(abs(F).^2,abs(L_times_delta_z).^2,'same');
plot(linearConv(:,center),z);
ylim(xlims_highzoom-center);
semilogx(mat2gray(linearConv(:,center))+1e-5,z);
ylim(xlims_highzoom-center);
xlim(xlims_highzoom); ylim(xlims_highzoom);
% This will work more generally where L(x) does not go to zero near the
cconv2 = @(x,y,~) fftshift(ifft2(fft2(ifftshift(x)).*fft2(ifftshift(y))));
circConv = cconv2(abs(F).^2,abs(L_times_delta_z).^2,'same');
plot(circConv(:,center),z);
ylim(xlims_highzoom-center);
semilogx(mat2gray(circConv(:,center))+1e-5,z);
ylim(xlims_highzoom-center);
xlim(xlims_highzoom); ylim(xlims_highzoom);
imshowpair(circConv,fsGeneratedField);
xlim(xlims_highzoom); ylim(xlims_highzoom);
sqrt(sum(abs(fsGeneratedField(:)-circConv(:)).^2))
We have thus proved the Field Synthesis theorem for an arbitrary line profile.
+
\ No newline at end of file
diff --git a/2019-chang-field-synthesis/FieldSynthesis/FieldSynthesisProofIllustrationNonIdeal.m b/2019-chang-field-synthesis/FieldSynthesis/FieldSynthesisProofIllustrationNonIdeal.m
new file mode 100644
index 0000000..7b9ca24
--- /dev/null
+++ b/2019-chang-field-synthesis/FieldSynthesis/FieldSynthesisProofIllustrationNonIdeal.m
@@ -0,0 +1,663 @@
+%% Field Synthesis Proof Illustration Live Script
+% Supplementary Material to:
+%
+% *Universal Light-Sheet Generation with Field Synthesis*
+%
+% Bo-Jui Chang, Mark Kittisopikul, Kevin M. Dean, Phillipe Roudot, Erik Welf
+% and Reto Fiolka.
+%% Field Synthesis Theorem for a Non-Ideal Line Scan
+% We want to prove that the sum of the intensity of individual line scans produces
+% a light-sheet illumination pattern equivalent to the intensity created by a
+% scanned light-sheet using a intensity scan profile of $|L(x)|^2$ in the x-dimension.
+%
+% Let F(x,z) describe the electric field produced by illuminating the entire
+% mask in the back pupil plane. $\hat{F}(k_x,k_z)$ represents the mask at the
+% back pupil plane, the Fourier transform of the electric field.
+%
+% An individual line scan is represented by the function $T_{a\;} \left(x,z\right)$
+% and has a Fourier transform $\hat{T}_a(k_x,k_z) = \hat{F}(k_x,k_z)\hat{L}(k_x
+% -a)$.
+%
+% $\hat{L}(k_x) $represents the profile of the line scan at the back focal
+% plane and in the ideal case is $\delta(k_x)$, an infinitely thin line. In the
+% non-ideal case, $\hat{L}(k_x)$ is an arbitrary line profile. It could be a Gaussian
+% function or a sinc function for example.
+%
+% The intensity of the illumination is represented by the square modulus
+% ${\left|\cdot \;\right|}^{2\;}$. The intensity created by illumination the entire
+% annular mask is $\left| F(x,z) \right| ^2$. The intensity of an individual line
+% scan is $\left| T_a(x,z) \right| ^2$.
+%
+% A sum of the intensity of individual line scans can be expressed as $\sum_a
+% \left| T_a(x,z) \right|^2$.
+%
+% An scanned light sheet is equivalent to the convolution of $|F(x,z)|^2$
+% and $|L(x)|^2 $ over the x-dimension: $\frac{1}{N} \left|F(x,z) \right|^2 **
+% |L(x)\delta(z)|^2$ . This is expressed as a 2-D convolution to avoid confusion.
+%
+% Thus we want to prove that $\sum_a \left|T_a(x,z) \right|^2 = \frac{1}{N}
+% \left|F(x,z) \right|^2 ** |L(x)\delta(z)|^2$
+%% Setup
+%%
+N = 512;
+center = floor(N/2+1);
+
+% Annulus mask at the back focal plane
+F_hat = createAnnulus(N, (82+88)/2, 10);
+F_hat = imgaussfilt(double(F_hat),0.5);
+
+% Delta function representing the line scan
+% L_hat = zeros(N);
+% L_hat(:,center) = 1;
+
+% Position of the line scan for demonstration
+a = -57;
+
+% x and z coordinates
+x = ceil(-N/2):floor(N/2-1);
+z = x;
+
+% Gaussian profile
+L_sigma = 5;
+L_hat = normpdf(x,0,L_sigma);
+L_hat = repmat(L_hat,N,1);
+
+
+% Zoom levels
+% 64x64 zoom level
+xlims_highzoom = [-1 1]*64+center;
+ylims_highzoom = [-1 1]*64+center;
+
+% 128x128 zoom level
+xlims_mediumzoom = [-1 1]*128+center;
+ylims_mediumzoom = [-1 1]*128+center;
+
+% Utility function to do shifts from back focal plane to object plane
+% Note that the shifts are necessary to have the coefficients where fftw
+% will expect them
+% 0.1 Shift the frequency space representation so the zeroth frequency is at
+% matrix index (1,1)
+% 0.2 Perform a 2-D inverse Fourier Transform
+% 0.3 Shift the object space representation so that "center" is located
+% in the center of the image
+doInverse2DFourierTransformWithShifts = @(X) fftshift( ifft2( ifftshift(X) ) );
+%% Definition of $\hat{T}_a$, frequency space presentation of each line scan in the back focal plane
+% We first start at the back pupil plane where we multiply a ring by a line
+% on a pixel-by-pixel basis.
+%
+% $$\hat{T_a}(k_x,k_z) = \hat{F}(k_x,k_z)\hat{L}(k_x-a)$$
+
+% Calculate T_a_hat
+
+L_hat_shifted = circshift(L_hat,[0 a]);
+T_a_hat = F_hat.*L_hat_shifted;
+
+figure;
+
+
+% Green annulus only
+subplot(2,2,1); % Upper left corner
+him = imshowpair(F_hat,zeros(512));
+xlim(xlims_mediumzoom); ylim(ylims_mediumzoom);
+text(1,1,'F_hat','Color','green');
+
+
+% Delta magenta only
+subplot(2,2,2); % Upper right corner
+him = imshowpair(zeros(512),L_hat_shifted);
+xlim(xlims_mediumzoom); ylim(ylims_mediumzoom);
+
+% Green annulus, magenta delta
+subplot(2,2,3); % Lower left corner
+him = imshowpair(F_hat,L_hat_shifted);
+xlim(xlims_mediumzoom); ylim(ylims_mediumzoom);
+
+% White overlap only
+subplot(2,2,4); % Lower right corner
+him = imshow(T_a_hat,[]);
+xlim(xlims_mediumzoom); ylim(ylims_mediumzoom);
+%% Equation 10
+% $$\sum_a |T_a(x,z)|^2 = \sum_a | \mathcal{F}^{-1} \left\{ \hat{T}_a(k_x,k_z)
+% \right\}(x,z) |^2$$
+%
+% In equation 10, we state the inverse 2-D Fourier transform relationship
+% between the electric field of an instaneous line scan, $T_a(x,z)$.
+
+% Save our example "a" for later use
+a_selected = a;
+T_a_hat_selected = T_a_hat;
+L_hat_shifted_selected = L_hat_shifted;
+
+a_sequence = -256:255;
+fsGeneratedField = zeros(N);
+for a = a_sequence
+ L_hat_shifted = circshift(L_hat,[0 a]);
+ T_a_hat = F_hat.*L_hat_shifted;
+ % 1.1 Shift the frequency space representation so the zeroth frequency is
+ % at matrix index (1,1)
+ % 1.2 Perform a 2-D inverse Fourier Transform
+ T_a = ifft2(ifftshift(T_a_hat));
+ fsGeneratedField = fsGeneratedField + abs(T_a).^2;
+end
+
+% 1.3 Shift the object space representation so that "center" is located
+% in the center of the image
+fsGeneratedField = fftshift(fsGeneratedField);
+
+figure;
+imshow(fsGeneratedField,[]);
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+fsGeneratedFieldSlice = fsGeneratedField(:,center);
+
+figure;
+subplot(1,2,1);
+plot(fsGeneratedFieldSlice,z);
+grid on;
+ylim(xlims_highzoom-center);
+
+subplot(1,2,2);
+semilogx(mat2gray(fsGeneratedFieldSlice)+1e-5,z);
+grid on;
+ylim(xlims_highzoom-center);
+
+
+% Restore our example "a"
+a = a_selected;
+T_a_hat = T_a_hat_selected;
+L_hat_shifted = L_hat_shifted_selected;
+
+%% Equation 11
+% In equation 11, we substitute in the frequency space representation at the
+% back focal plane which we just defined above.
+%
+% $$\sum_a |T_a(x,z)|^2 = \sum_a | \mathcal{F}^{-1} \left\{ \hat{F}(k_x,k_z)\hat{L}(k_x-a)
+% \right\}(x,z) |^2$$
+%
+% Note that because $\hat{T}_a$ is not conjugate symmetric, $\hat{T}_a(k_x,k_z)
+% \neq \hat{T}_a^*(-k_x,-k_z)$, the range of$T_a$ is complex valued.
+%
+% To illustrate this we will focus on a single instaneous line scan at "a".
+% Change the variable "a" above to view another slice.
+
+% 2.1 Shift the frequency space representation so the zeroth frequency
+% is at matrix index (1,1)
+% 2.2 Perform a 2-D inverse Fourier Transform
+T_a = ifft2(ifftshift(T_a_hat));
+% 2.3 Shift the object space representation so that "center" is located
+% in the center of the image
+T_a = fftshift(T_a);
+% Subsequent inverse Fourier Transforms will use
+% doInverse2DFourierTransformWithShifts as defined in setup
+% T_a = doInverse2DFourierTransformWithShifts(T_a_hat);
+
+figure;
+subplot(1,3,1);
+him = imshow(real(T_a),[]);
+him.Parent.Position = [0 0 0.3 1];
+text(50,50,'Real\{ T_a \}','Color','green');
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+
+subplot(1,3,2);
+him = imshow(imag(T_a),[]);
+him.Parent.Position = [ 0.33 0 0.3 1];
+text(50,50,'Imaginary\{ T_a \}','Color','green');
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+
+subplot(1,3,3);
+him = imshow(abs(T_a).^2,[]);
+him.Parent.Position = [0.67 0 0.3 1];
+text(50,50,'Square Magnitude\{ T_a \}','Color','green');
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+%% Equation 12
+% $$\sum_a |T_a(x,z)|^2 = \sum_a | \mathcal{F}^{-1} \left\{ \hat{F}(k_x,k_z)
+% \right\} ** \mathcal{F}^{-1} \left\{\hat{L}(k_x-a) \right\}(x,z) |^2$$
+%
+% Next we apply the the 2-D Convolution Theorem to observe that $T_a$ is
+% the 2-D convolution of the inverse Fourier Transform of each term.
+
+F = doInverse2DFourierTransformWithShifts(F_hat);
+
+figure;
+subplot(1,3,1);
+him = imshow(real(F),[]);
+him.Parent.Position = [0 0 0.3 1];
+text(50,50,'Real\{ F \}','Color','green');
+% colormap(gca,hot);
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+
+
+subplot(1,3,2);
+him = imshow(imag(F),[0 1]);
+him.Parent.Position = [ 0.33 0 0.3 1];
+% colormap(gca,hot);
+text(50,50,'Imaginary\{ F \}','Color','green');
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+
+
+subplot(1,3,3);
+him = imshow(abs(F).^2,[]);
+him.Parent.Position = [0.67 0 0.3 1];
+text(50,50,'| F |^2','Color','green');
+% colormap(gca,hot);
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+L_shifted_times_delta_z = doInverse2DFourierTransformWithShifts(L_hat_shifted);
+
+figure;
+subplot(1,3,1);
+him = imshow(real(L_shifted_times_delta_z),[]);
+him.Parent.Position = [0 0 0.3 1];
+text(256-56,256-56,'Real\{ L\_shifted \}','Color','green','interpreter','tex');
+% colormap(gca,hot);
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+
+
+subplot(1,3,2);
+him = imshow(imag(L_shifted_times_delta_z),[]);
+him.Parent.Position = [ 0.33 0 0.3 1];
+% colormap(gca,hot);
+text(256-56,256-56,'Imaginary\{ L\_shifted \}','Color','green');
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+
+
+subplot(1,3,3);
+him = imshow(abs(L_shifted_times_delta_z).^2,[]);
+him.Parent.Position = [0.67 0 0.3 1];
+text(256-56,256-56,'| L\_shifted |^2','Color','green');
+colormap(gca,hot);
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+%%
+%
+
+T_a_by_conv = conv2(F,L_shifted_times_delta_z,'same');
+
+figure;
+subplot(1,3,1);
+him = imshow(real(T_a_by_conv),[]);
+him.Parent.Position = [0 0 0.3 1];
+text(256-56,256-56,'Real\{ F ** L\_shifted \}','Color','green','interpreter','tex');
+% colormap(gca,hot);
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+
+
+subplot(1,3,2);
+him = imshow(imag(T_a_by_conv),[]);
+him.Parent.Position = [ 0.33 0 0.3 1];
+% colormap(gca,hot);
+text(256-56,256-56,'Imaginary\{ F ** L\_shifted \}','Color','green');
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+
+
+subplot(1,3,3);
+him = imshow(abs(T_a_by_conv).^2,[]);
+him.Parent.Position = [0.67 0 0.3 1];
+text(256-56,256-56,'| F ** L\_shifted |^2','Color','green');
+% colormap(gca,hot);
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+%% Equation 13
+% $$\sum_a |T_a(x,z)|^2 = \sum_a \left|F(x,z) ** \frac{1}{N}\delta(z)L(x)\exp\left(\frac{2\pi
+% i x a}{N} \right) \right|^2$$
+%
+% The inverse 2-D Fourier Transform of $\hat{L}(k_x-a)$is $\frac{1}{N}\delta(z)L(x)\exp
+% \left( \frac{2\pi i x a }{N} \right) $. Below we illustrate that the product
+% of the complex exponential and $\delta(z)$ is the same as $\mathcal{F}^{-1}\{
+% \delta(k_x-a) \}$.
+
+% delta_z = zeros(512);
+% delta_z(center,:) = 1/N;
+L_times_delta_z = doInverse2DFourierTransformWithShifts(L_hat);
+
+complex_exp = exp(2*pi*1i*x*a/N);
+
+figure;
+subplot(3,1,1)
+plot(real(complex_exp));
+xlim(xlims_highzoom);
+xlabel('x');
+ylabel('Real\{ $ \exp(\frac{2 \pi i x a }{ N}) $ \}','interpreter','latex');
+
+subplot(3,1,2);
+plot(imag(complex_exp));
+xlim(xlims_highzoom);
+xlabel('x');
+ylabel('Imag\{ $ \exp(\frac{2 \pi i x a }{ N}) $ \}','interpreter','latex');
+
+
+subplot(3,1,3);
+plot(abs(complex_exp).^2);
+xlim(xlims_highzoom);
+ylim([0 2]);
+xlabel('x');
+ylabel(' $ | \exp(\frac{2 \pi i x a }{ N}) |^2 $','interpreter','latex');
+
+
+
+complex_exp = repmat(complex_exp,512,1);
+L_shifted_by_product = L_times_delta_z.*complex_exp;
+
+label = '$ \frac{1}{N}\delta(z)L(x)\exp(\frac{2 \pi i x a }{ N}) $';
+
+figure;
+subplot(1,3,1);
+him = imshow(real(L_shifted_by_product),[]);
+him.Parent.Position = [0 0 0.3 1];
+text(256-56,256-56,['Re\{' label '\}'],'Color','green','interpreter','latex');
+% colormap(gca,hot);
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+
+
+subplot(1,3,2);
+him = imshow(imag(L_shifted_by_product),[]);
+him.Parent.Position = [ 0.33 0 0.3 1];
+% colormap(gca,hot);
+text(256-56,256-56,['Im\{' label '\}'],'Color','green','interpreter','latex');
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+
+
+subplot(1,3,3);
+him = imshow(abs(L_shifted_by_product).^2,[]);
+him.Parent.Position = [0.67 0 0.3 1];
+text(256-56,256-56,['$ | $ ' label ' $ |^2 $'],'Color','green','interpreter','latex');
+colormap(gca,hot);
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+
+%% Equation 14
+% $$\sum_a | T_a(x,z)|^2 = \sum_a \left|\sum_{x'}\sum_{z'} \frac{1}{N} \left[
+% F(x',z') \exp \left( \frac{2 \pi i (x-x') a}{N} \right) L(x-x')\delta(z-z')
+% \right] \right|^2$$
+%
+% Next, we can use the definition of 2-D convolution to expand out the expression
+% as two nested summations.
+
+hfig = figure('visible','on');
+him = imshow(zeros(N,N*2),[0 1]);
+cumulativeSum = zeros(N);
+% Technically, we are animated the commuted convolution here, which is equivalent
+% Only iterate over 3 rows of z for brevity
+for zp=((-1:1)*32)
+ for xp=x
+ F_shifted = circshift(F,[zp xp]).* complex_exp(center,xp+center);
+ cumulativeSum = cumulativeSum + F_shifted.*L_times_delta_z(zp+center,xp+center);
+ him.CData = [mat2gray(abs(F_shifted).^2) mat2gray(abs(cumulativeSum).^2)];
+ drawnow;
+ end
+end
+xlim(xlims_highzoom+N); ylim(xlims_highzoom);
+%%
+% The above is an animation. Run this section to see it. In a static document
+% like a PDF, only the last frame will be shown. The cumulative sum also retains
+% its complex character as is shown in the illustration of its real component.
+
+figure; imshow(real(cumulativeSum),[]);
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+%% Equation 15
+% $$\sum_a | T_a(x,z)|^2 = \frac{1}{N^2} \sum_a \left| \exp \left( \frac{2 \pi
+% i x a}{N} \right) \sum_{x'} \left[ F(x',z')L(x-x') \exp \left( -\frac{2 \pi
+% i x' a}{N} \right) \right] \right|^2$$
+%
+% Because of the 1-D delta function $\delta(z-z')$in the summation, we only
+% need to perform the summation over x, the middle row. Only the term when $z'
+% = z$ survives.
+
+hfig = figure('visible','on');
+him = imshow(zeros(N,N*2),[0 1]);
+cumulativeSum = zeros(N);
+% Technically, we are animated the commuted convolution here, which is equivalent
+% We only iterate over on row
+zp = 0;
+for xp=x
+ F_shifted = circshift(F.*conj(complex_exp),[0 xp]); %exp(2*pi*1i*xp*a/N);
+ cumulativeSum = cumulativeSum + F_shifted.*L_times_delta_z(zp+center,xp+center);
+ him.CData = [mat2gray(abs(F_shifted).^2) mat2gray(abs(complex_exp.*cumulativeSum).^2)];
+ drawnow;
+end
+xlim(xlims_highzoom+N); ylim(xlims_highzoom);
+%%
+% Note that the variable cumulativeSum now differs from $T_a$. Let's call
+% that field $Q_a$and observe it is real valued.
+%
+% $$Q_a(x,z)= \sum_{x'} \left[ F(x',z')L(x-x') \exp \left( -\frac{2 \pi
+% i x' a}{N} \right) \right]$$
+%
+% $$T_a(x,z) = \exp \left( \frac{2 \pi i x a}{N} \right) Q_a(x,z)$$
+
+Q_a = cumulativeSum;
+
+figure; imshow(real(complex_exp.*Q_a),[]);
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+figure; imshow(real(Q_a),[]);
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+% Note that Q_a is real valued!
+figure; imshow(imag(Q_a),[0 1]);
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+%% Equation 16
+% $$\sum_a | T_a(x,z)|^2 = \frac{1}{N^2} \sum_a \left| \exp \left( \frac{2 \pi
+% i (x) a}{N} \right) \right|^2 \left| \sum_{x'} \left[ F(x',z')L(x-x') \exp
+% \left( -\frac{2 \pi i x' a}{N} \right) \right] \right|^2$$
+%
+% The multiplicative property of the complex modulus allows us to factor
+% out the square modulus of the first complex exponential. The square modulus
+% of that complex exponential is unity, 1, everywhere.
+
+label = '\exp(\frac{2 \pi i x a }{ N})';
+
+figure;
+subplot(1,3,1);
+him = imshow(real(complex_exp),[]);
+him.Parent.Position = [0 0 0.3 1];
+text(256-56,256-56,['Re\{ $' label '$ \}'], ...
+ 'BackgroundColor',[0.9 0.9 0.9],'Color','magenta','interpreter','latex');
+% colormap(gca,hot);
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+
+
+subplot(1,3,2);
+him = imshow(imag(complex_exp),[]);
+him.Parent.Position = [ 0.33 0 0.3 1];
+% colormap(gca,hot);
+text(256-56,256-56,['Im\{ $' label '$ \}'], ...
+ 'BackgroundColor',[0.9 0.9 0.9],'Color','magenta','interpreter','latex');
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+
+
+subplot(1,3,3);
+% Adjust upper color limit so you can see the white square
+him = imshow(abs(complex_exp).^2,[0 1.1]);
+him.Parent.Position = [0.67 0 0.3 1];
+text(256-56,256-56,['$ | ' label ' |^2 $'], ...
+ 'BackgroundColor',[0.9 0.9 0.9],'Color','black','interpreter','latex');
+% colormap(gca,hot);
+% colorbar;
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+%% Equation 17
+% $$\sum_a | T_a(x,z)|^2 = \frac{1}{N^2} \sum_a \left| \mathcal{F}_{x'} \left\{
+% F(x',z)L(x-x') \right\}(a,z) \right|^2$$
+%
+% We can simplify the expression further using the definition of the 1-D
+% Fourier Transform with respect to $x'$. Note that this creates a field where
+% the x-dimension is frequency space and the z-dimension is in object space. In
+% this non-ideal case, there is now some variation in the x-dimension as seen
+% in the $x-x'$term of $L(x-x')$. For illustrative purposes, we will focus on
+% the $x = 0$ central slice in object space.
+%
+%
+
+L_flipped = fliplr(L_times_delta_z);
+if(mod(size(L_times_delta_z,2),2) == 2)
+ % If the dimension is even sized, we need to keep the center in the
+ % center by shifting the array over by one
+ L_flipped = circshift(L_flipped,[0 1]);
+end
+% L is only a function of x, and we do not need the \delta(z) now
+L_flipped = repmat(L_flipped(center,:),N,1);
+
+one_d_ft = fftshift(fft(ifftshift(F.*L_flipped,2),[],2),2);
+label = '\mathcal{F}_{x''} \left\{ F(x'',z)L(-x'') \right\}(k_x,z)';
+
+figure('Position',[0 0 800 600]);
+subplot(1,3,1);
+him = imshow(real(one_d_ft),[]);
+him.Parent.Position = [0 0 0.3 1];
+text(256-56-64,256-56-32,['Re\{ $ ' label ' $ \}'],'Color','magenta','interpreter','latex');
+% colormap(gca,hot);
+xlim(xlims_mediumzoom); ylim(xlims_mediumzoom);
+
+
+subplot(1,3,2);
+him = imshow(imag(one_d_ft),[0 1]);
+him.Parent.Position = [ 0.33 0 0.3 1];
+% colormap(gca,hot);
+text(256-56-64,256-56-32,['Im\{ $ ' label ' $ \}'],'Color','magenta','interpreter','latex');
+xlim(xlims_mediumzoom); ylim(xlims_mediumzoom);
+
+
+subplot(1,3,3);
+% Adjust upper color limit so you can see the white square
+him = imshow(abs(one_d_ft).^2,[]);
+him.Parent.Position = [0.67 0 0.3 1];
+text(256-56-64,256-56-32,['$ | ' label ' |^2 $'],'Color','magenta','interpreter','latex');
+% colormap(gca,hot);
+% colorbar;
+xlim(xlims_mediumzoom); ylim(xlims_mediumzoom);
+%%
+% The z-profile of $|T_a(0,z)|^2$ is a one-dimensional Fourier Transform
+% of $F(x,z)L(-x), |\mathcal{F}_{x'} \{F(x',z)L(-x') \}(a,z)|^2$
+
+delta_shifted = zeros(size(L_hat));
+delta_shifted(:,center+a) = 1;
+figure; imshowpair(abs(one_d_ft).^2,delta_shifted);
+xlim(xlims_mediumzoom); ylim(xlims_mediumzoom);
+%%
+% To see this, let the 1-D function $g_a(z) = \mathcal{F}_{x'} \{F(x',z)L(-x')
+% \}(a,z)$
+
+z = x;
+g_a = one_d_ft(:,a+center);
+label = '\mathcal{F}_{x''} \left\{ F(x'',z) \right\}(a,z)';
+figure;
+subplot(1,3,1);
+plot(real(g_a),z);
+xl = xlim;
+ylim(xlims_mediumzoom-center);
+ylabel('z');
+xlabel(['Re\{$ ' label ' $\}'],'interpreter','latex');
+
+subplot(1,3,2);
+plot(imag(g_a),z);
+xlim(xl);
+ylim(xlims_mediumzoom-center);
+ylabel('z');
+xlabel(['Im\{$ ' label ' $\}'],'interpreter','latex');
+
+
+subplot(1,3,3);
+plot(abs(g_a).^2,z);
+ylim(xlims_mediumzoom-center);
+ylabel('z');
+xlabel(['$ |' label '|^2 $'],'interpreter','latex');
+
+%%
+% Now that we have followed each instaneous $T_a(x,z) \mbox{ and then }
+% Q_a(x,z)$ through the manipulations, we now consider the summation over "a".
+
+one_d_ft_projection = sum(abs(one_d_ft).^2,2);
+
+figure;
+subplot(1,2,1);
+plot(one_d_ft_projection,z);
+grid on;
+ylim(xlims_highzoom-center);
+
+subplot(1,2,2);
+semilogx(mat2gray(one_d_ft_projection)+1e-5,z);
+grid on;
+ylim(xlims_highzoom-center);
+%% Equation 18
+%% $$\sum_a | T_a(x,z)|^2 = \frac{1}{N} \sum_{x'} | F(x',z)L(x-x')|^2$$
+% We use Parserval's theorem to equate the sum of the square modulus of the
+% 1-D Fourier transform of the sequence with the sum of the square modulus of
+% the original electric field produced by the mask. The sum of the square modulus
+% of the electric field is a projection in the x' direction. This projection is
+% created by the conventional manner of scanning a beam across a field to create
+% a lightsheet.
+
+FL_projection = sum(abs(F.*L_flipped).^2,2)/N;
+
+figure;
+subplot(1,2,1);
+plot(FL_projection,z);
+grid on;
+ylim(xlims_highzoom-center);
+
+subplot(1,2,2);
+semilogx(mat2gray(FL_projection)+1e-5,z);
+grid on;
+ylim(xlims_highzoom-center);
+%% Equation 19
+% $$\sum_a | T_a(x,z)|^2 = \frac{1}{N} \sum_{x'} | F(x',z)|^2 |L(x-x')|^2$$
+%
+% By the properties the complex square modulus, we can separately take the
+% square modulus of the F and L portions of the summand.
+
+FL_projection_split = sum(abs(F).^2.*abs(L_flipped).^2,2)/N;
+
+figure;
+subplot(1,2,1);
+plot(FL_projection_split,z);
+grid on;
+ylim(xlims_highzoom-center);
+
+subplot(1,2,2);
+semilogx(mat2gray(FL_projection_split)+1e-5,z);
+grid on;
+ylim(xlims_highzoom-center);
+%% Equation 20
+% $$\sum_a | T_a(x,z)|^2 = \frac{1}{N} \sum_{z'} \sum_{x'} | F(x',z')|^2 |L(x-x')\delta(z-z')|^2$$
+%
+% Next we reintroduce the delta function in terms of z to restore the double
+% summation. The reason for this is to convert the 1-D convolution in Equation
+% 19 into a 2-D convolution in Equation 21.
+%% Equation 21
+% $$\sum_a | T_a(x,z)|^2 = \frac{1}{N} | F(x,z)|^2 ** |L(x)\delta(z)|^2$$
+
+% Linear convolution
+linearConv = conv2(abs(F).^2,abs(L_times_delta_z).^2,'same');
+figure;
+subplot(1,2,1);
+plot(linearConv(:,center),z);
+grid on;
+ylim(xlims_highzoom-center);
+
+subplot(1,2,2);
+semilogx(mat2gray(linearConv(:,center))+1e-5,z);
+grid on;
+ylim(xlims_highzoom-center);
+figure;
+imshow(linearConv,[]);
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+% Circular convolution
+% This will work more generally where L(x) does not go to zero near the
+% boundaries
+cconv2 = @(x,y,~) fftshift(ifft2(fft2(ifftshift(x)).*fft2(ifftshift(y))));
+circConv = cconv2(abs(F).^2,abs(L_times_delta_z).^2,'same');
+figure;
+subplot(1,2,1);
+plot(circConv(:,center),z);
+grid on;
+ylim(xlims_highzoom-center);
+
+subplot(1,2,2);
+semilogx(mat2gray(circConv(:,center))+1e-5,z);
+grid on;
+ylim(xlims_highzoom-center);
+figure;
+imshow(circConv,[]);
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+figure;
+imshowpair(circConv,fsGeneratedField);
+xlim(xlims_highzoom); ylim(xlims_highzoom);
+
+% Room mean sqare
+sqrt(sum(abs(fsGeneratedField(:)-circConv(:)).^2))
+%%
+% We have thus proved the Field Synthesis theorem for an arbitrary line
+% profile.
\ No newline at end of file
diff --git a/2019-chang-field-synthesis/FieldSynthesis/FieldSynthesisProofIllustrationNonIdeal.mlx b/2019-chang-field-synthesis/FieldSynthesis/FieldSynthesisProofIllustrationNonIdeal.mlx
new file mode 100644
index 0000000..f474813
Binary files /dev/null and b/2019-chang-field-synthesis/FieldSynthesis/FieldSynthesisProofIllustrationNonIdeal.mlx differ
diff --git a/2019-chang-field-synthesis/FieldSynthesis/FieldSynthesisTheorem.m b/2019-chang-field-synthesis/FieldSynthesis/FieldSynthesisTheorem.m
new file mode 100644
index 0000000..16a8364
--- /dev/null
+++ b/2019-chang-field-synthesis/FieldSynthesis/FieldSynthesisTheorem.m
@@ -0,0 +1,264 @@
+function [F,fieldSynthesis,dithered,Q,T] = FieldSynthesisTheorem(F,L)
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+% Small program to illustrate a new Field Synthesis Theorem.
+%
+% In essence it says that the projection of the absolute modulus of a
+% complex field is the same as when one takes a sliding window in the
+% Fourier domain, makes an inverse FFT of each slice, take the absolute
+% modulus of that and sum it up while moving the window through the
+% spectrum. This has important applications for scanned light-sheets and
+% how to generate them.
+%
+% Reto Fiolka, May 2017
+% Mark Kittisopikul, May 2017 - Aug 2018
+%
+% INPUT
+% F - electric field at the front focal plane, may be real or complex
+% valued
+%
+% OUTPUT
+% F - electric field at the front focal plane
+% slice - intensity of illumination pattern by field synthesis
+% smear - intensity of illumination pattern by dithering
+% Q - Fourier transform of individual line scan without phasing,a=10
+% T - Fourier transform of individual line scan with phasing,a=10
+%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+% Field Synthesis Demonstration -
+% MATLAB code to demonstrate field synthesis light sheet microscopy
+% Copyright (C) 2018 Reto Fioka,
+% University of Texas Southwestern Medical Center
+% Copyright (C) 2018 Mark Kittisopikul,
+% Northwestern University
+%
+% This program is free software: you can redistribute it and/or modify
+% it under the terms of the GNU General Public License as published by
+% the Free Software Foundation, either version 3 of the License, or
+% (at your option) any later version.
+%
+% This program is distributed in the hope that it will be useful,
+% but WITHOUT ANY WARRANTY; without even the implied warranty of
+% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+% GNU General Public License for more details.
+%
+% You should have received a copy of the GNU General Public License
+% along with this program. If not, see .
+
+%% Initialize input
+% assume this is the e-field in real space (real or complex valued)
+if(nargin < 1 || isempty(F))
+ % Use stock image as an arbitrary efield
+ F = imread('cameraman.tif');
+ imaginaryAmplitude = 1;
+ F=double(F)+1j*rand(size(F))*imaginaryAmplitude;
+end
+if(nargin < 2 || isempty(L))
+ L = ones(1,size(F,1));
+end
+
+% F(x,y) is the eletric field and can be complex valued
+% get F properties. F was previously called efield
+sz = size(F);
+N = sz(2);
+center = floor(N/2+1);
+
+% then this is the spectrum of the efield
+% spectrum is F_hat(k_x,k_y) in the proof
+F_hat_unshifted = fft2(F);
+F_hat=fftshift(F_hat_unshifted);
+% the intensity is the modulus squared of the efield
+% this is a real valued image
+F_sqmod=abs(F).^2;
+% slice is an array that is created by superposition of
+% inverse FFTs of spectral slices
+fieldSynthesis=zeros(sz);
+% smear is created by scanning the image in real space
+dithered=zeros(sz);
+
+%% Calculate line scan profile at back focal plane
+L_hat_unshifted = fft(ifftshift(L));
+L_hat = fftshift(L_hat_unshifted);
+L_hat = repmat(L_hat,size(F,1),1);
+
+%% Calculate convolution kernel for front focal plane
+L_sqmod = zeros(size(F));
+L_sqmod(center,:) = abs(L).^2;
+
+%% Do line scan
+for a=1:N
+
+ % If L were a delta function, then this would work
+ % take one slice of spectrum and take inverse FFT
+ % T_hat=zeros(sz);
+ % T_hat(:,a)=F_hat(:,a);
+
+ T_hat = F_hat.*circshift(L_hat,[0 a-center]);
+
+ T=ifft2(ifftshift(T_hat));
+ % superimpose intensities (modulus squared) of
+ % inverse FFTs of spectral slices
+ fieldSynthesis=fieldSynthesis+abs(T).^2;
+ % smearing the image in x-direction
+ % intensity is superimposed at every position
+ dithered=dithered+(circshift(F_sqmod,[0,a-center])).*L_sqmod(center,a);
+end
+
+
+
+%% Line profiles of the smeared intensity images
+
+fieldSynthesisCentralZSlice=fieldSynthesis(:,center);
+
+ditheredCentralZSlice=dithered(:,center);
+
+%alternatively, one can also just project the intensity image I in x
+% if L_sqmod were delta(z)
+% projectionProfile=sum(F_sqmod,2)/N;
+% more generally, this can be done by circular convolution
+smearByCircularConvolution = fftshift(ifft2(fft2(ifftshift(F_sqmod)).*fft2(ifftshift(L_sqmod))));
+
+
+% The profile can be calculated directly by taking a 1 dimensional fourier
+% transform
+F_unshifted = ifftshift(F,2);
+if(mod(N,2) == 0)
+ % even
+ L_flipped_unshifted = [L(1) fliplr(L(2:end))];
+else
+ % odd
+ L_flipped_unshifted = fliplr(L);
+end
+L_flipped_unshifted = repmat(L_flipped_unshifted,N,1);
+L_flipped_unshifted = ifftshift(L_flipped_unshifted,2);
+
+oneDFT = fftshift(fft(F_unshifted.*L_flipped_unshifted,[],2),2);
+oneDFT = abs(oneDFT).^2;
+oneDFT = sum(oneDFT,2);
+
+
+%% Plot Figures;
+figure;
+
+subplot(2,3,1);
+imshow(F_sqmod,[]);
+title('Original Intensity');
+
+subplot(2,3,2);
+imshow(fieldSynthesis,[]);
+title('Field Synthesis');
+
+subplot(2,3,3);
+imshow(dithered,[]);
+title('Smear / Dither');
+
+
+% All profiles are identical
+subplot(2,3,4:6);
+plot(smearByCircularConvolution(:,center),'ko','DisplayName','Projection')
+hold on;
+xlim([1 N]);
+
+plot(fieldSynthesisCentralZSlice/N,'b+','DisplayName','Field Synthesis');
+
+plot(ditheredCentralZSlice,'rx','DisplayName','Dithered');
+
+plot(oneDFT/N,'g.','DisplayName','1D FT');
+
+grid on;
+legend('show','Location','southwest');
+title('Vertical Z Profiles are the Identical');
+xlabel('z position');
+
+% disp('Press any key');
+% pause;
+if(nargout > 3)
+
+%% Explanation of the profile of individual line scans
+% T represents a selected column in the spectral field selected by the scan
+
+% efield_xft = fft(F,[],2);
+
+% for k=1:N
+
+a = center-10;
+hfig = figure('units','normalized','outerposition',[0 0 1 1]);
+
+% T is constructed similarly to above in the for loop
+% The only difference is how k is indexed in the unshifted spectrum
+% T_hat=zeros(sz);
+% T_hat(:,a)=F_hat_unshifted(:,a);
+T_hat = F_hat_unshifted.*circshift(L_hat_unshifted,[0 a-center]);
+T = ifft2(T_hat);
+
+% Q differs from T because the selected column is copied into k_x = 0
+% Q_hat = zeros(N);
+% Q_hat(:,1) = F_hat_unshifted(:,a);
+Q_hat = circshift(T_hat,[0 center-a]);
+Q = ifft2(Q_hat);
+
+subplot(4,3,1);
+imshow(real(Q),[]);
+title('Real(Q)');
+
+subplot(4,3,2);
+imshow(imag(Q),[]);
+title('Imag(Q)');
+
+subplot(4,3,3);
+imshow(abs(Q).^2,[]);
+title('abs(Q)^2');
+
+subplot(4,3,4);
+imshow(real(T),[]);
+title('Real(T)');
+
+subplot(4,3,5);
+imshow(imag(T),[]);
+title('Imag(T)');
+
+subplot(4,3,6);
+imshow(abs(T).^2,[]);
+title('abs(T)^2');
+
+subplot(4,3,7:9);
+plot(real(Q(:,1))*N,'r-');
+hold on;
+% plot(real(efield_xft(:,a)),'ro');
+
+plot(imag(Q(:,1))*N,'b-');
+% plot(imag(efield_xft(:,a)),'bo');
+
+% legend({'real(Q)','Real 1D FFT of E','imag(Q)','Imag 1D FFT of E'}, ...
+% 'Location','southoutside','Orientation','horizontal');
+legend({'real(Q)','imag(Q)'}, ...
+ 'Location','southoutside','Orientation','horizontal');
+title('Q is the Fourier Transform of a Line Scan in the Spectrum');
+xlim([1 N]);
+xlabel('z position (pixels)');
+
+
+% pause(1);
+
+subplot(4,3,10:12);
+% plot(real(exp(1i*2*pi*(a-1)/N.*(0:N-1))),'r-');
+hold on;
+plot(real(T(center,:)./Q(center,:)),'ro');
+% plot(imag(exp(1i*2*pi*(a-1)/N.*(0:N-1))),'b-');
+plot(imag(T(center,:)./Q(center,:)),'bo');
+title(['T is Q With Complex Modulation ' ...
+ 'Due to the Location of the Line Scan']);
+xlabel('z position (pixels)');
+ylabel('T/Q');
+xlim([1 N]);
+
+
+
+% pause(1);
+
+% close(hfig);
+% end;
+
+end
+
+end
diff --git a/2019-chang-field-synthesis/FieldSynthesis/FieldSynthesisVersusLattice.m b/2019-chang-field-synthesis/FieldSynthesis/FieldSynthesisVersusLattice.m
new file mode 100644
index 0000000..3bb8ee2
--- /dev/null
+++ b/2019-chang-field-synthesis/FieldSynthesis/FieldSynthesisVersusLattice.m
@@ -0,0 +1,234 @@
+function [varargout] = FieldSynthesisVersusLattice(n,w,r,offset,dispRange)
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%
+%Simulation for field synthesis
+%
+% compares field synthesis vs square lattice
+%
+%
+% Reto, May 2017
+% Mark Kittisopikul, August 2018
+%
+% INPUT
+% n - Defines the size of the image and mask to be n x n
+% w - Width of the mask components
+% r - Radius of the annulus (width is centered on the annulus)
+% offset - Offset of the side components of the square lattice
+% dispRange - Set which part of mask to display in figures
+%
+% OUTPUT
+% out - struct containing workspace of this function
+%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+% Field Synthesis Demonstration -
+% MATLAB code to demonstrate field synthesis light sheet microscopy
+% Copyright (C) 2018 Reto Fioka,
+% University of Texas Southwestern Medical Center
+% Copyright (C) 2018 Mark Kittisopikul,
+% Northwestern University
+%
+% This program is free software: you can redistribute it and/or modify
+% it under the terms of the GNU General Public License as published by
+% the Free Software Foundation, either version 3 of the License, or
+% (at your option) any later version.
+%
+% This program is distributed in the hope that it will be useful,
+% but WITHOUT ANY WARRANTY; without even the implied warranty of
+% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+% GNU General Public License for more details.
+%
+% You should have received a copy of the GNU General Public License
+% along with this program. If not, see .
+
+%% Parameters
+% Size of the mask
+if(nargin < 1)
+ n=4096;
+end
+% Width of the annulus
+if(nargin < 2)
+ w=5;
+end
+% Radius of the annulus
+if(nargin < 3)
+ r=256;
+ % r = 200
+end
+% Offset for side slits
+if(nargin < 4)
+ offset = r;
+ % offset=198;
+end
+% Display range
+if(nargin < 5)
+ dispRange = (-600:600)+floor(n/2)+1;
+end
+
+%% Create clean annulus
+% We do not need to initialize
+% since we will create the matrix with createAnnulus
+% annulus = zeros(n);
+
+% Vector for x and y, which should be symmetric
+v = 1:n;
+% zeroth order coefficient is at n/2+1,n/2+1 due to fftshift/ifftshift
+v = v-floor(n/2)-1;
+
+% Create an annulus of radius r with width w centered in an n x n matrix
+annulus = createAnnulus(v, r, w);
+
+% Select columns for mask
+abs_v = abs(v);
+% Select three sets of frequency columns
+% 1) Group of columns centered on the offset to the left of width w
+% 2) Group of columns in the center of width w
+% 3) Group of columns centered on the offset to the right of width w
+selected_columns = (abs_v < offset+w/2 & abs_v > offset-w/2) | ...
+ (v < w/2 & v > -w/2);
+
+% Remove unselected columns from mask
+latticeFourierMask = annulus;
+latticeFourierMask(:,~selected_columns) = false;
+latticeFourierMask = double(latticeFourierMask);
+% latticeFourierMask is now the Fourier mask of a square lattice
+
+%% Field Synthesis
+
+% The field synthesis is process is equivalent to summing over a
+% 1D Fourier Transform of the mask
+% 1) Shift so the 0th frequency is at 1,1
+% 2) Do the 1D inverse FT
+% 3) Shift so the center pixel is the center of the image
+fieldSynthesisProfile = fftshift(ifft(ifftshift(latticeFourierMask)));
+fieldSynthesisProfile = sum(abs(fieldSynthesisProfile).^2,2);
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%% Lattice simulation
+
+% The electric field of lattice is the 2D Fourier Transform of the mask
+lattice_efield=fftshift(ifft2(ifftshift(latticeFourierMask)));
+% Take the square modulus to get the intensity
+lattice=abs(lattice_efield).^2;
+% Perform the dithering operation
+latticeLineProfile=sum(lattice,2);
+% Scale by n, due ifft2 normalization
+latticeLineProfile=latticeLineProfile*n;
+
+%% Plot: Compare lattice profile to field synthesis profile
+figure;
+% Show the convention lattice profile
+subplot(3,1,1);
+plot(dispRange-n/2+1,latticeLineProfile(dispRange));
+xlim([min(dispRange) max(dispRange)]-n/2+1);
+title('Conventional Lattice Profile');
+
+subplot(3,1,2);
+% Show the field synthesis profile
+plot(dispRange-n/2+1,fieldSynthesisProfile(dispRange),'r')
+xlim([min(dispRange) max(dispRange)]-n/2+1);
+title('Field Synthesis Profile');
+
+subplot(3,1,3);
+% Compare the two profiles
+plot(dispRange-n/2+1,latticeLineProfile(dispRange));
+hold on;
+plot(dispRange-n/2+1,fieldSynthesisProfile(dispRange),'r--')
+xlim([min(dispRange) max(dispRange)]-n/2+1);
+title('Comparison of Lattice and Field Synthesis Profiles');
+
+%% Analysis of all interference patterns in lattice
+
+% lattice is the intensity of the pattern as per above
+% lattice=abs(B).^2;
+%Fourier transform of lattice
+lattice_hat=fftshift(fft2(ifftshift(lattice)));
+
+
+%% Dithering lattice: lattice pattern is shifted by subpixel steps and added
+% Calculate time average by dithering over the period
+period = n/offset;
+
+% To dither, we average over one period of the lattice by shifting
+if(period == round(period))
+ % The shifting operation can be done via a 2D convolution
+ latticeDithered = conv2(lattice,ones(1,period)/period,'same');
+ % % The following block of code is equivalent to the above line
+ % latticeDithered = zeros(size(lattice));
+ % for s=floor(-period/2):floor(period/2)-1
+ % latticeDithered = latticeDithered + circshift(lattice,s,2);
+ % end
+ % latticeDithered = latticeDithered / period;
+else
+ % Above, we assume that the period is of integer units.
+ % If it were not of integer units, we can use the following code
+ % Use the convolution theorem to do convolution in Fourier space
+ latticeDithered = bsxfun(@times,lattice_hat,sinc(v/period));
+ latticeDithered = fftshift(ifft2(ifftshift(latticeDithered)));
+ % % We could also approximate the the dithering via subpixel steps
+ % subpixelFactor = 1/(period-floor(period));
+ % subpixelFactor = ceil( subpixelFactor );
+ % subpixelFactor = min(subpixelFactor,10);
+ % period = floor(period*subpixelFactor);
+ % latticeDithered = conv2( interpft(lattice,n*subpixelFactor,2), ...
+ % ones(1,period)/period,'same');
+ % latticeDithered = interpft(latticeDithered,n,2);
+end
+
+%Fourier transform of dithered lattice
+latticeDithered_hat=fftshift(fft2(ifftshift(latticeDithered)));
+
+%% Plot 2x3
+
+h = figure;
+% Make figure full screen
+set(h,'Units','normalized','Position',[0 0 1 1]);
+
+% Show the mask
+subplot(2,3,1)
+imshow(latticeFourierMask(dispRange,dispRange),[0 1e-6]);colormap hot
+title('Electric field in pupil');
+
+% Show the Fourier transform of the _intensity_ of the lattice
+subplot(2,3,2)
+imshow(abs(lattice_hat(dispRange,dispRange)),[0 1e-6]);colormap hot
+title('Fourier components of lattice intensity');
+
+% Show the Fourier transform of the dithered lattice intensity
+subplot(2,3,3)
+imshow(abs(latticeDithered_hat(dispRange,dispRange)),[0 1e-6]);colormap hot
+title('Fourier components of dithered lattice intensity');
+
+% Show the electric field of the lattice at the focal plane
+subplot(2,3,4);
+imshow(lattice_efield(dispRange,dispRange),[]);
+title('Electric field of lattice at focal plane');
+% Zoom in so we can see the details of the lattice
+xlim([-75 75]+length(dispRange)/2+1);
+ylim([-75 75]+length(dispRange)/2+1);
+
+% Show the intensity of the lattice
+subplot(2,3,5)
+imshow(lattice(dispRange,dispRange),[]);
+title('Intensity of lattice');
+% Zoom in so we can see the details of the lattice
+xlim([-75 75]+length(dispRange)/2+1);
+ylim([-75 75]+length(dispRange)/2+1);
+
+% Show the Fourier transform of the dithered lattice intensity
+subplot(2,3,6)
+imshow(latticeDithered(dispRange,dispRange),[]);
+title('Averaged Intensity of dithered lattice');
+xlim([-75 75]+length(dispRange)/2+1);
+ylim([-75 75]+length(dispRange)/2+1);
+
+%% Output
+if(nargout > 0)
+ % If output is requested, pack workspace into a struct
+ varnames = who;
+ out = struct;
+ for varIdx = 1:length(varnames)
+ out.(varnames{varIdx}) = eval(varnames{varIdx});
+ end
+ varargout{1} = out;
+end
\ No newline at end of file
diff --git a/2019-chang-field-synthesis/FieldSynthesis/LICENSE.txt b/2019-chang-field-synthesis/FieldSynthesis/LICENSE.txt
new file mode 100644
index 0000000..f288702
--- /dev/null
+++ b/2019-chang-field-synthesis/FieldSynthesis/LICENSE.txt
@@ -0,0 +1,674 @@
+ GNU GENERAL PUBLIC LICENSE
+ Version 3, 29 June 2007
+
+ Copyright (C) 2007 Free Software Foundation, Inc.
+ Everyone is permitted to copy and distribute verbatim copies
+ of this license document, but changing it is not allowed.
+
+ Preamble
+
+ The GNU General Public License is a free, copyleft license for
+software and other kinds of works.
+
+ The licenses for most software and other practical works are designed
+to take away your freedom to share and change the works. By contrast,
+the GNU General Public License is intended to guarantee your freedom to
+share and change all versions of a program--to make sure it remains free
+software for all its users. We, the Free Software Foundation, use the
+GNU General Public License for most of our software; it applies also to
+any other work released this way by its authors. You can apply it to
+your programs, too.
+
+ When we speak of free software, we are referring to freedom, not
+price. Our General Public Licenses are designed to make sure that you
+have the freedom to distribute copies of free software (and charge for
+them if you wish), that you receive source code or can get it if you
+want it, that you can change the software or use pieces of it in new
+free programs, and that you know you can do these things.
+
+ To protect your rights, we need to prevent others from denying you
+these rights or asking you to surrender the rights. Therefore, you have
+certain responsibilities if you distribute copies of the software, or if
+you modify it: responsibilities to respect the freedom of others.
+
+ For example, if you distribute copies of such a program, whether
+gratis or for a fee, you must pass on to the recipients the same
+freedoms that you received. You must make sure that they, too, receive
+or can get the source code. And you must show them these terms so they
+know their rights.
+
+ Developers that use the GNU GPL protect your rights with two steps:
+(1) assert copyright on the software, and (2) offer you this License
+giving you legal permission to copy, distribute and/or modify it.
+
+ For the developers' and authors' protection, the GPL clearly explains
+that there is no warranty for this free software. For both users' and
+authors' sake, the GPL requires that modified versions be marked as
+changed, so that their problems will not be attributed erroneously to
+authors of previous versions.
+
+ Some devices are designed to deny users access to install or run
+modified versions of the software inside them, although the manufacturer
+can do so. This is fundamentally incompatible with the aim of
+protecting users' freedom to change the software. The systematic
+pattern of such abuse occurs in the area of products for individuals to
+use, which is precisely where it is most unacceptable. Therefore, we
+have designed this version of the GPL to prohibit the practice for those
+products. If such problems arise substantially in other domains, we
+stand ready to extend this provision to those domains in future versions
+of the GPL, as needed to protect the freedom of users.
+
+ Finally, every program is threatened constantly by software patents.
+States should not allow patents to restrict development and use of
+software on general-purpose computers, but in those that do, we wish to
+avoid the special danger that patents applied to a free program could
+make it effectively proprietary. To prevent this, the GPL assures that
+patents cannot be used to render the program non-free.
+
+ The precise terms and conditions for copying, distribution and
+modification follow.
+
+ TERMS AND CONDITIONS
+
+ 0. Definitions.
+
+ "This License" refers to version 3 of the GNU General Public License.
+
+ "Copyright" also means copyright-like laws that apply to other kinds of
+works, such as semiconductor masks.
+
+ "The Program" refers to any copyrightable work licensed under this
+License. Each licensee is addressed as "you". "Licensees" and
+"recipients" may be individuals or organizations.
+
+ To "modify" a work means to copy from or adapt all or part of the work
+in a fashion requiring copyright permission, other than the making of an
+exact copy. The resulting work is called a "modified version" of the
+earlier work or a work "based on" the earlier work.
+
+ A "covered work" means either the unmodified Program or a work based
+on the Program.
+
+ To "propagate" a work means to do anything with it that, without
+permission, would make you directly or secondarily liable for
+infringement under applicable copyright law, except executing it on a
+computer or modifying a private copy. Propagation includes copying,
+distribution (with or without modification), making available to the
+public, and in some countries other activities as well.
+
+ To "convey" a work means any kind of propagation that enables other
+parties to make or receive copies. Mere interaction with a user through
+a computer network, with no transfer of a copy, is not conveying.
+
+ An interactive user interface displays "Appropriate Legal Notices"
+to the extent that it includes a convenient and prominently visible
+feature that (1) displays an appropriate copyright notice, and (2)
+tells the user that there is no warranty for the work (except to the
+extent that warranties are provided), that licensees may convey the
+work under this License, and how to view a copy of this License. If
+the interface presents a list of user commands or options, such as a
+menu, a prominent item in the list meets this criterion.
+
+ 1. Source Code.
+
+ The "source code" for a work means the preferred form of the work
+for making modifications to it. "Object code" means any non-source
+form of a work.
+
+ A "Standard Interface" means an interface that either is an official
+standard defined by a recognized standards body, or, in the case of
+interfaces specified for a particular programming language, one that
+is widely used among developers working in that language.
+
+ The "System Libraries" of an executable work include anything, other
+than the work as a whole, that (a) is included in the normal form of
+packaging a Major Component, but which is not part of that Major
+Component, and (b) serves only to enable use of the work with that
+Major Component, or to implement a Standard Interface for which an
+implementation is available to the public in source code form. A
+"Major Component", in this context, means a major essential component
+(kernel, window system, and so on) of the specific operating system
+(if any) on which the executable work runs, or a compiler used to
+produce the work, or an object code interpreter used to run it.
+
+ The "Corresponding Source" for a work in object code form means all
+the source code needed to generate, install, and (for an executable
+work) run the object code and to modify the work, including scripts to
+control those activities. However, it does not include the work's
+System Libraries, or general-purpose tools or generally available free
+programs which are used unmodified in performing those activities but
+which are not part of the work. For example, Corresponding Source
+includes interface definition files associated with source files for
+the work, and the source code for shared libraries and dynamically
+linked subprograms that the work is specifically designed to require,
+such as by intimate data communication or control flow between those
+subprograms and other parts of the work.
+
+ The Corresponding Source need not include anything that users
+can regenerate automatically from other parts of the Corresponding
+Source.
+
+ The Corresponding Source for a work in source code form is that
+same work.
+
+ 2. Basic Permissions.
+
+ All rights granted under this License are granted for the term of
+copyright on the Program, and are irrevocable provided the stated
+conditions are met. This License explicitly affirms your unlimited
+permission to run the unmodified Program. The output from running a
+covered work is covered by this License only if the output, given its
+content, constitutes a covered work. This License acknowledges your
+rights of fair use or other equivalent, as provided by copyright law.
+
+ You may make, run and propagate covered works that you do not
+convey, without conditions so long as your license otherwise remains
+in force. You may convey covered works to others for the sole purpose
+of having them make modifications exclusively for you, or provide you
+with facilities for running those works, provided that you comply with
+the terms of this License in conveying all material for which you do
+not control copyright. Those thus making or running the covered works
+for you must do so exclusively on your behalf, under your direction
+and control, on terms that prohibit them from making any copies of
+your copyrighted material outside their relationship with you.
+
+ Conveying under any other circumstances is permitted solely under
+the conditions stated below. Sublicensing is not allowed; section 10
+makes it unnecessary.
+
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
+
+ No covered work shall be deemed part of an effective technological
+measure under any applicable law fulfilling obligations under article
+11 of the WIPO copyright treaty adopted on 20 December 1996, or
+similar laws prohibiting or restricting circumvention of such
+measures.
+
+ When you convey a covered work, you waive any legal power to forbid
+circumvention of technological measures to the extent such circumvention
+is effected by exercising rights under this License with respect to
+the covered work, and you disclaim any intention to limit operation or
+modification of the work as a means of enforcing, against the work's
+users, your or third parties' legal rights to forbid circumvention of
+technological measures.
+
+ 4. Conveying Verbatim Copies.
+
+ You may convey verbatim copies of the Program's source code as you
+receive it, in any medium, provided that you conspicuously and
+appropriately publish on each copy an appropriate copyright notice;
+keep intact all notices stating that this License and any
+non-permissive terms added in accord with section 7 apply to the code;
+keep intact all notices of the absence of any warranty; and give all
+recipients a copy of this License along with the Program.
+
+ You may charge any price or no price for each copy that you convey,
+and you may offer support or warranty protection for a fee.
+
+ 5. Conveying Modified Source Versions.
+
+ You may convey a work based on the Program, or the modifications to
+produce it from the Program, in the form of source code under the
+terms of section 4, provided that you also meet all of these conditions:
+
+ a) The work must carry prominent notices stating that you modified
+ it, and giving a relevant date.
+
+ b) The work must carry prominent notices stating that it is
+ released under this License and any conditions added under section
+ 7. This requirement modifies the requirement in section 4 to
+ "keep intact all notices".
+
+ c) You must license the entire work, as a whole, under this
+ License to anyone who comes into possession of a copy. This
+ License will therefore apply, along with any applicable section 7
+ additional terms, to the whole of the work, and all its parts,
+ regardless of how they are packaged. This License gives no
+ permission to license the work in any other way, but it does not
+ invalidate such permission if you have separately received it.
+
+ d) If the work has interactive user interfaces, each must display
+ Appropriate Legal Notices; however, if the Program has interactive
+ interfaces that do not display Appropriate Legal Notices, your
+ work need not make them do so.
+
+ A compilation of a covered work with other separate and independent
+works, which are not by their nature extensions of the covered work,
+and which are not combined with it such as to form a larger program,
+in or on a volume of a storage or distribution medium, is called an
+"aggregate" if the compilation and its resulting copyright are not
+used to limit the access or legal rights of the compilation's users
+beyond what the individual works permit. Inclusion of a covered work
+in an aggregate does not cause this License to apply to the other
+parts of the aggregate.
+
+ 6. Conveying Non-Source Forms.
+
+ You may convey a covered work in object code form under the terms
+of sections 4 and 5, provided that you also convey the
+machine-readable Corresponding Source under the terms of this License,
+in one of these ways:
+
+ a) Convey the object code in, or embodied in, a physical product
+ (including a physical distribution medium), accompanied by the
+ Corresponding Source fixed on a durable physical medium
+ customarily used for software interchange.
+
+ b) Convey the object code in, or embodied in, a physical product
+ (including a physical distribution medium), accompanied by a
+ written offer, valid for at least three years and valid for as
+ long as you offer spare parts or customer support for that product
+ model, to give anyone who possesses the object code either (1) a
+ copy of the Corresponding Source for all the software in the
+ product that is covered by this License, on a durable physical
+ medium customarily used for software interchange, for a price no
+ more than your reasonable cost of physically performing this
+ conveying of source, or (2) access to copy the
+ Corresponding Source from a network server at no charge.
+
+ c) Convey individual copies of the object code with a copy of the
+ written offer to provide the Corresponding Source. This
+ alternative is allowed only occasionally and noncommercially, and
+ only if you received the object code with such an offer, in accord
+ with subsection 6b.
+
+ d) Convey the object code by offering access from a designated
+ place (gratis or for a charge), and offer equivalent access to the
+ Corresponding Source in the same way through the same place at no
+ further charge. You need not require recipients to copy the
+ Corresponding Source along with the object code. If the place to
+ copy the object code is a network server, the Corresponding Source
+ may be on a different server (operated by you or a third party)
+ that supports equivalent copying facilities, provided you maintain
+ clear directions next to the object code saying where to find the
+ Corresponding Source. Regardless of what server hosts the
+ Corresponding Source, you remain obligated to ensure that it is
+ available for as long as needed to satisfy these requirements.
+
+ e) Convey the object code using peer-to-peer transmission, provided
+ you inform other peers where the object code and Corresponding
+ Source of the work are being offered to the general public at no
+ charge under subsection 6d.
+
+ A separable portion of the object code, whose source code is excluded
+from the Corresponding Source as a System Library, need not be
+included in conveying the object code work.
+
+ A "User Product" is either (1) a "consumer product", which means any
+tangible personal property which is normally used for personal, family,
+or household purposes, or (2) anything designed or sold for incorporation
+into a dwelling. In determining whether a product is a consumer product,
+doubtful cases shall be resolved in favor of coverage. For a particular
+product received by a particular user, "normally used" refers to a
+typical or common use of that class of product, regardless of the status
+of the particular user or of the way in which the particular user
+actually uses, or expects or is expected to use, the product. A product
+is a consumer product regardless of whether the product has substantial
+commercial, industrial or non-consumer uses, unless such uses represent
+the only significant mode of use of the product.
+
+ "Installation Information" for a User Product means any methods,
+procedures, authorization keys, or other information required to install
+and execute modified versions of a covered work in that User Product from
+a modified version of its Corresponding Source. The information must
+suffice to ensure that the continued functioning of the modified object
+code is in no case prevented or interfered with solely because
+modification has been made.
+
+ If you convey an object code work under this section in, or with, or
+specifically for use in, a User Product, and the conveying occurs as
+part of a transaction in which the right of possession and use of the
+User Product is transferred to the recipient in perpetuity or for a
+fixed term (regardless of how the transaction is characterized), the
+Corresponding Source conveyed under this section must be accompanied
+by the Installation Information. But this requirement does not apply
+if neither you nor any third party retains the ability to install
+modified object code on the User Product (for example, the work has
+been installed in ROM).
+
+ The requirement to provide Installation Information does not include a
+requirement to continue to provide support service, warranty, or updates
+for a work that has been modified or installed by the recipient, or for
+the User Product in which it has been modified or installed. Access to a
+network may be denied when the modification itself materially and
+adversely affects the operation of the network or violates the rules and
+protocols for communication across the network.
+
+ Corresponding Source conveyed, and Installation Information provided,
+in accord with this section must be in a format that is publicly
+documented (and with an implementation available to the public in
+source code form), and must require no special password or key for
+unpacking, reading or copying.
+
+ 7. Additional Terms.
+
+ "Additional permissions" are terms that supplement the terms of this
+License by making exceptions from one or more of its conditions.
+Additional permissions that are applicable to the entire Program shall
+be treated as though they were included in this License, to the extent
+that they are valid under applicable law. If additional permissions
+apply only to part of the Program, that part may be used separately
+under those permissions, but the entire Program remains governed by
+this License without regard to the additional permissions.
+
+ When you convey a copy of a covered work, you may at your option
+remove any additional permissions from that copy, or from any part of
+it. (Additional permissions may be written to require their own
+removal in certain cases when you modify the work.) You may place
+additional permissions on material, added by you to a covered work,
+for which you have or can give appropriate copyright permission.
+
+ Notwithstanding any other provision of this License, for material you
+add to a covered work, you may (if authorized by the copyright holders of
+that material) supplement the terms of this License with terms:
+
+ a) Disclaiming warranty or limiting liability differently from the
+ terms of sections 15 and 16 of this License; or
+
+ b) Requiring preservation of specified reasonable legal notices or
+ author attributions in that material or in the Appropriate Legal
+ Notices displayed by works containing it; or
+
+ c) Prohibiting misrepresentation of the origin of that material, or
+ requiring that modified versions of such material be marked in
+ reasonable ways as different from the original version; or
+
+ d) Limiting the use for publicity purposes of names of licensors or
+ authors of the material; or
+
+ e) Declining to grant rights under trademark law for use of some
+ trade names, trademarks, or service marks; or
+
+ f) Requiring indemnification of licensors and authors of that
+ material by anyone who conveys the material (or modified versions of
+ it) with contractual assumptions of liability to the recipient, for
+ any liability that these contractual assumptions directly impose on
+ those licensors and authors.
+
+ All other non-permissive additional terms are considered "further
+restrictions" within the meaning of section 10. If the Program as you
+received it, or any part of it, contains a notice stating that it is
+governed by this License along with a term that is a further
+restriction, you may remove that term. If a license document contains
+a further restriction but permits relicensing or conveying under this
+License, you may add to a covered work material governed by the terms
+of that license document, provided that the further restriction does
+not survive such relicensing or conveying.
+
+ If you add terms to a covered work in accord with this section, you
+must place, in the relevant source files, a statement of the
+additional terms that apply to those files, or a notice indicating
+where to find the applicable terms.
+
+ Additional terms, permissive or non-permissive, may be stated in the
+form of a separately written license, or stated as exceptions;
+the above requirements apply either way.
+
+ 8. Termination.
+
+ You may not propagate or modify a covered work except as expressly
+provided under this License. Any attempt otherwise to propagate or
+modify it is void, and will automatically terminate your rights under
+this License (including any patent licenses granted under the third
+paragraph of section 11).
+
+ However, if you cease all violation of this License, then your
+license from a particular copyright holder is reinstated (a)
+provisionally, unless and until the copyright holder explicitly and
+finally terminates your license, and (b) permanently, if the copyright
+holder fails to notify you of the violation by some reasonable means
+prior to 60 days after the cessation.
+
+ Moreover, your license from a particular copyright holder is
+reinstated permanently if the copyright holder notifies you of the
+violation by some reasonable means, this is the first time you have
+received notice of violation of this License (for any work) from that
+copyright holder, and you cure the violation prior to 30 days after
+your receipt of the notice.
+
+ Termination of your rights under this section does not terminate the
+licenses of parties who have received copies or rights from you under
+this License. If your rights have been terminated and not permanently
+reinstated, you do not qualify to receive new licenses for the same
+material under section 10.
+
+ 9. Acceptance Not Required for Having Copies.
+
+ You are not required to accept this License in order to receive or
+run a copy of the Program. Ancillary propagation of a covered work
+occurring solely as a consequence of using peer-to-peer transmission
+to receive a copy likewise does not require acceptance. However,
+nothing other than this License grants you permission to propagate or
+modify any covered work. These actions infringe copyright if you do
+not accept this License. Therefore, by modifying or propagating a
+covered work, you indicate your acceptance of this License to do so.
+
+ 10. Automatic Licensing of Downstream Recipients.
+
+ Each time you convey a covered work, the recipient automatically
+receives a license from the original licensors, to run, modify and
+propagate that work, subject to this License. You are not responsible
+for enforcing compliance by third parties with this License.
+
+ An "entity transaction" is a transaction transferring control of an
+organization, or substantially all assets of one, or subdividing an
+organization, or merging organizations. If propagation of a covered
+work results from an entity transaction, each party to that
+transaction who receives a copy of the work also receives whatever
+licenses to the work the party's predecessor in interest had or could
+give under the previous paragraph, plus a right to possession of the
+Corresponding Source of the work from the predecessor in interest, if
+the predecessor has it or can get it with reasonable efforts.
+
+ You may not impose any further restrictions on the exercise of the
+rights granted or affirmed under this License. For example, you may
+not impose a license fee, royalty, or other charge for exercise of
+rights granted under this License, and you may not initiate litigation
+(including a cross-claim or counterclaim in a lawsuit) alleging that
+any patent claim is infringed by making, using, selling, offering for
+sale, or importing the Program or any portion of it.
+
+ 11. Patents.
+
+ A "contributor" is a copyright holder who authorizes use under this
+License of the Program or a work on which the Program is based. The
+work thus licensed is called the contributor's "contributor version".
+
+ A contributor's "essential patent claims" are all patent claims
+owned or controlled by the contributor, whether already acquired or
+hereafter acquired, that would be infringed by some manner, permitted
+by this License, of making, using, or selling its contributor version,
+but do not include claims that would be infringed only as a
+consequence of further modification of the contributor version. For
+purposes of this definition, "control" includes the right to grant
+patent sublicenses in a manner consistent with the requirements of
+this License.
+
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
+patent license under the contributor's essential patent claims, to
+make, use, sell, offer for sale, import and otherwise run, modify and
+propagate the contents of its contributor version.
+
+ In the following three paragraphs, a "patent license" is any express
+agreement or commitment, however denominated, not to enforce a patent
+(such as an express permission to practice a patent or covenant not to
+sue for patent infringement). To "grant" such a patent license to a
+party means to make such an agreement or commitment not to enforce a
+patent against the party.
+
+ If you convey a covered work, knowingly relying on a patent license,
+and the Corresponding Source of the work is not available for anyone
+to copy, free of charge and under the terms of this License, through a
+publicly available network server or other readily accessible means,
+then you must either (1) cause the Corresponding Source to be so
+available, or (2) arrange to deprive yourself of the benefit of the
+patent license for this particular work, or (3) arrange, in a manner
+consistent with the requirements of this License, to extend the patent
+license to downstream recipients. "Knowingly relying" means you have
+actual knowledge that, but for the patent license, your conveying the
+covered work in a country, or your recipient's use of the covered work
+in a country, would infringe one or more identifiable patents in that
+country that you have reason to believe are valid.
+
+ If, pursuant to or in connection with a single transaction or
+arrangement, you convey, or propagate by procuring conveyance of, a
+covered work, and grant a patent license to some of the parties
+receiving the covered work authorizing them to use, propagate, modify
+or convey a specific copy of the covered work, then the patent license
+you grant is automatically extended to all recipients of the covered
+work and works based on it.
+
+ A patent license is "discriminatory" if it does not include within
+the scope of its coverage, prohibits the exercise of, or is
+conditioned on the non-exercise of one or more of the rights that are
+specifically granted under this License. You may not convey a covered
+work if you are a party to an arrangement with a third party that is
+in the business of distributing software, under which you make payment
+to the third party based on the extent of your activity of conveying
+the work, and under which the third party grants, to any of the
+parties who would receive the covered work from you, a discriminatory
+patent license (a) in connection with copies of the covered work
+conveyed by you (or copies made from those copies), or (b) primarily
+for and in connection with specific products or compilations that
+contain the covered work, unless you entered into that arrangement,
+or that patent license was granted, prior to 28 March 2007.
+
+ Nothing in this License shall be construed as excluding or limiting
+any implied license or other defenses to infringement that may
+otherwise be available to you under applicable patent law.
+
+ 12. No Surrender of Others' Freedom.
+
+ If conditions are imposed on you (whether by court order, agreement or
+otherwise) that contradict the conditions of this License, they do not
+excuse you from the conditions of this License. If you cannot convey a
+covered work so as to satisfy simultaneously your obligations under this
+License and any other pertinent obligations, then as a consequence you may
+not convey it at all. For example, if you agree to terms that obligate you
+to collect a royalty for further conveying from those to whom you convey
+the Program, the only way you could satisfy both those terms and this
+License would be to refrain entirely from conveying the Program.
+
+ 13. Use with the GNU Affero General Public License.
+
+ Notwithstanding any other provision of this License, you have
+permission to link or combine any covered work with a work licensed
+under version 3 of the GNU Affero General Public License into a single
+combined work, and to convey the resulting work. The terms of this
+License will continue to apply to the part which is the covered work,
+but the special requirements of the GNU Affero General Public License,
+section 13, concerning interaction through a network will apply to the
+combination as such.
+
+ 14. Revised Versions of this License.
+
+ The Free Software Foundation may publish revised and/or new versions of
+the GNU General Public License from time to time. Such new versions will
+be similar in spirit to the present version, but may differ in detail to
+address new problems or concerns.
+
+ Each version is given a distinguishing version number. If the
+Program specifies that a certain numbered version of the GNU General
+Public License "or any later version" applies to it, you have the
+option of following the terms and conditions either of that numbered
+version or of any later version published by the Free Software
+Foundation. If the Program does not specify a version number of the
+GNU General Public License, you may choose any version ever published
+by the Free Software Foundation.
+
+ If the Program specifies that a proxy can decide which future
+versions of the GNU General Public License can be used, that proxy's
+public statement of acceptance of a version permanently authorizes you
+to choose that version for the Program.
+
+ Later license versions may give you additional or different
+permissions. However, no additional obligations are imposed on any
+author or copyright holder as a result of your choosing to follow a
+later version.
+
+ 15. Disclaimer of Warranty.
+
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
+APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
+HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
+OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
+THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
+IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
+ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
+
+ 16. Limitation of Liability.
+
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
+WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
+THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
+GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
+USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
+DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
+PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
+EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
+SUCH DAMAGES.
+
+ 17. Interpretation of Sections 15 and 16.
+
+ If the disclaimer of warranty and limitation of liability provided
+above cannot be given local legal effect according to their terms,
+reviewing courts shall apply local law that most closely approximates
+an absolute waiver of all civil liability in connection with the
+Program, unless a warranty or assumption of liability accompanies a
+copy of the Program in return for a fee.
+
+ END OF TERMS AND CONDITIONS
+
+ How to Apply These Terms to Your New Programs
+
+ If you develop a new program, and you want it to be of the greatest
+possible use to the public, the best way to achieve this is to make it
+free software which everyone can redistribute and change under these terms.
+
+ To do so, attach the following notices to the program. It is safest
+to attach them to the start of each source file to most effectively
+state the exclusion of warranty; and each file should have at least
+the "copyright" line and a pointer to where the full notice is found.
+
+
+ Copyright (C)
+
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see .
+
+Also add information on how to contact you by electronic and paper mail.
+
+ If the program does terminal interaction, make it output a short
+notice like this when it starts in an interactive mode:
+
+ Copyright (C)
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
+ This is free software, and you are welcome to redistribute it
+ under certain conditions; type `show c' for details.
+
+The hypothetical commands `show w' and `show c' should show the appropriate
+parts of the General Public License. Of course, your program's commands
+might be different; for a GUI interface, you would use an "about box".
+
+ You should also get your employer (if you work as a programmer) or school,
+if any, to sign a "copyright disclaimer" for the program, if necessary.
+For more information on this, and how to apply and follow the GNU GPL, see
+.
+
+ The GNU General Public License does not permit incorporating your program
+into proprietary programs. If your program is a subroutine library, you
+may consider it more useful to permit linking proprietary applications with
+the library. If this is what you want to do, use the GNU Lesser General
+Public License instead of this License. But first, please read
+.
diff --git a/2019-chang-field-synthesis/FieldSynthesis/README.md b/2019-chang-field-synthesis/FieldSynthesis/README.md
new file mode 100644
index 0000000..be868bf
--- /dev/null
+++ b/2019-chang-field-synthesis/FieldSynthesis/README.md
@@ -0,0 +1,190 @@
+# FieldSynthesis
+
+## Abstract
+
+We introduce Field Synthesis, a theorem that can be used to synthesize any scanned or dithered light-sheet, including those used in lattice light-sheet microscopy (LLSM), from an incoherent superposition of one-dimensional intensity distributions. This user-friendly and modular approach offers a drastically simplified optical design, higher light-throughput, simultaneous multicolor illumination, and a 100% spatial duty cycle, thereby providing uncompromised biological imaging with decreased rates of photobleaching.
+
+## Manuscript
+
+
+Bo-Jui Chang1, Mark Kittisopikul2,4, Kevin M. Dean1,3, Phillipe Roudot1,3, Erik Welf1,3 and Reto Fiolka1,3.
+"Universal Light-Sheet Generation with Field Synthesis."
+
+### Affiliations
+1. Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA.
+2. Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, USA.
+3. Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA.
+4. Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
+
+### BioRxiv Preprint
+[https://www.biorxiv.org/content/early/2018/09/26/427468](https://www.biorxiv.org/content/early/2018/09/26/427468)
+
+## System Requirements
+
+* [MATLAB (2017a or above), Mathworks, Natick, MA](https://www.mathworks.com/support/sysreq.html)
+** Image Processing Toolbox
+** Follow MATLAB link above for operating system requirements
+* Git 2.18.0 or above
+
+## Installation and Demo
+
+Typical Install Time: 5 minutes
+
+git clone https://github.com/AdvancedImagingUTSW/FieldSynthesis.git
+
+See below documentation for demonstration. Typical run time: 10 minutes
+
+## Code
+
+### FieldSynthesisTheorem.m
+
+ Small program to illustrate a new Field Synthesis Theorem.
+
+ In essence it says that the projection of the absolute modulus of a
+ complex field is the same as when one takes a sliding window in the
+ Fourier domain, makes an inverse FFT of each slice, take the absolute
+ modulus of that and sum it up while moving the window through the
+ spectrum. This has important applications for scanned light-sheets and
+ how to generate them.
+
+ Reto Fiolka, May 2017
+ Mark Kittisopikul, May 2017 - Aug 2018
+
+ #### INPUT
+ * efield - electric field at the focal plane, may be real or complex
+ valued
+
+ #### OUTPUT
+ * efield - electric field at the focal plane
+ * slice - intensity of illumination pattern by field synthesis
+ * smear - intensity of illumination pattern by dithering
+ * Q - Fourier transform of individual line scan without phasing,a=10
+ * T - Fourier transform of individual line scan with phasing,a=10
+
+```matlab
+FieldSynthesisTheorem.m;
+```
+
+
+
+
+
+### FieldSynthesisInteractive.m
+
+FieldSynthesisInteractive Create an interactive line scan demonstration of
+field synthesis
+
+ #### INPUT
+ * mask - mask at the pupil, which is the Fourier transform of electrical
+ field at the focal plane
+ * doshift - if true, shift the Fourier transform of the mask so the first
+ pixel is in the center of the image rather than the upper left
+
+ #### OUTPUT
+ * hfig - handle for the display figure
+
+ #### INTERACTIVE
+ * The button in the lower left plays / pauses the movie.
+ * The arrow buttons on the slider will move the scan by one column.
+ * Clicking on the trough of the slider will move the scan by five columns.
+ * The button in the lower right labeled R will reset the cumulative view.
+
+ #### EXAMPLE
+```matlab
+ FieldSynthesisInteractive; % default demonstration with cameraman
+```
+
+
+```matlab
+ FieldSynthesisInteractive(createAnnulus(),true); % demonstrate a Bessel beam
+```
+
+
+
+ Mark Kittisopikul , August 2018
+ Goldman Lab
+ Northwestern University
+
+### FieldSynthesisVersusLattice.m
+
+Simulation for field synthesis
+
+ compares field synthesis vs square lattice
+
+
+ Reto, May 2017
+ Mark Kittisopikul, August 2018
+
+ #### INPUT
+ * n - Defines the size of the image and mask to be n x n
+ * w - Width of the mask components
+ * r - Radius of the annulus (width is centered on the annulus)
+ * offset - Offset of the side components of the square lattice
+ * dispRange - Set which part of mask to display in figures
+
+ #### OUTPUT
+ * out - struct containing workspace of this function
+
+```matlab
+FieldSynthesisVersusLattice.m
+```
+
+
+
+
+
+### createAnnulus.m
+
+ #### INPUT (all optional)
+ * n - size of the annular mask as a scalar, or vector with coordinates
+ * r - radius of the annulus in pixels
+ * w - width of the annulus in pixels
+
+ #### OUTPUT
+ * annulus - n x n matrix with the annulus marked with ones
+
+ #### USAGE
+```matlab
+ figure;
+ imshow(createAnnulus(256,32,4),[]);
+```
+
+
+
+ Create Bessel beam 2D profile
+```matlab
+ figure;
+ imshow(log(abs(fftshift(ifft2(ifftshift(createAnnulus)))).^2+1),[]);
+ colormap(gca,hot);
+ caxis([0 6e-4]);
+```
+
+
+
+ #### REMARKS
+ This could be streamlined using the bresenham circle algorithm
+
+ Mark Kittisopikul, August 25th, 2018
+ Lab of Robert D. Goldman
+ Northwestern University
+
+## License
+
+ See LICENSE.txt
+
+ Field Synthesis Demonstration - MATLAB code to demonstrate field synthesis light sheet microscopy
+ Copyright (C) 2018 Reto Fioka, University of Texas Southwestern Medical Center
+ Copyright (C) 2018 Mark Kittisopikul, Northwestern University
+
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see .
diff --git a/2019-chang-field-synthesis/FieldSynthesis/createAnnulus.m b/2019-chang-field-synthesis/FieldSynthesis/createAnnulus.m
new file mode 100644
index 0000000..442750d
--- /dev/null
+++ b/2019-chang-field-synthesis/FieldSynthesis/createAnnulus.m
@@ -0,0 +1,81 @@
+function [ annulus ] = createAnnulus( n, r, w )
+%createAnnulus Create a binary annular mask
+%
+% INPUT (all optional)
+% n - size of the annular mask as a scalar, or vector with coordinates
+% r - radius of the annulus in pixels
+% w - width of the annulus in pixels
+%
+% OUTPUT
+% annulus - n x n matrix with the annulus marked with ones
+%
+% USAGE
+% figure;
+% imshow(createAnnulus(256,32,4),[]);
+%
+% Create Bessel beam 2D profile
+% figure;
+% imshow(log(abs(fftshift(ifft2(ifftshift(createAnnulus)))).^2+1),[]);
+% colormap(gca,hot);
+% caxis([0 6e-4]);
+%
+% REMARKS
+% This could be streamlined using the bresenham circle algorithm
+
+% Mark Kittisopikul, August 25th, 2018
+% Lab of Robert D. Goldman;
+% Northwestern University
+
+% Field Synthesis Demonstration -
+% MATLAB code to demonstrate field synthesis light sheet microscopy
+% Copyright (C) 2018 Reto Fioka,
+% University of Texas Southwestern Medical Center
+% Copyright (C) 2018 Mark Kittisopikul,
+% Northwestern University
+%
+% This program is free software: you can redistribute it and/or modify
+% it under the terms of the GNU General Public License as published by
+% the Free Software Foundation, either version 3 of the License, or
+% (at your option) any later version.
+%
+% This program is distributed in the hope that it will be useful,
+% but WITHOUT ANY WARRANTY; without even the implied warranty of
+% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+% GNU General Public License for more details.
+%
+% You should have received a copy of the GNU General Public License
+% along with this program. If not, see .
+
+
+if(nargin < 1)
+ n = 256;
+end
+if(nargin < 2)
+ r = 32;
+end
+if(nargin < 3)
+ w = 4;
+end
+
+if(isscalar(n))
+ v = 1:n;
+ % zeroth order coefficient is at n/2+1,n/2+1 due to fftshift/ifftshift
+ v = v-floor(n/2)-1;
+else
+ % non-scalar given. Use n as coordinates
+ v = n;
+end
+
+% Calculate radial position in polar coordinate system
+% Pre-bsxfun expansion code (pre 2017a):
+[Y,X] = meshgrid(v,v);
+Q = hypot(X,Y);
+
+% Bsxfun expansion code (post-2017a)
+% Q = hypot(v,v.');
+
+% Create an annulus with radius r and width w
+annulus = abs(Q -r) < w;
+
+end
+
diff --git a/2019-chang-field-synthesis/FieldSynthesis/images/FieldSynthesisInteractive.png b/2019-chang-field-synthesis/FieldSynthesis/images/FieldSynthesisInteractive.png
new file mode 100644
index 0000000..3ed9dee
Binary files /dev/null and b/2019-chang-field-synthesis/FieldSynthesis/images/FieldSynthesisInteractive.png differ
diff --git a/2019-chang-field-synthesis/FieldSynthesis/images/FieldSynthesisInteractive_bessel.png b/2019-chang-field-synthesis/FieldSynthesis/images/FieldSynthesisInteractive_bessel.png
new file mode 100644
index 0000000..03b9716
Binary files /dev/null and b/2019-chang-field-synthesis/FieldSynthesis/images/FieldSynthesisInteractive_bessel.png differ
diff --git a/2019-chang-field-synthesis/FieldSynthesis/images/FieldSynthesisTheorem_1.png b/2019-chang-field-synthesis/FieldSynthesis/images/FieldSynthesisTheorem_1.png
new file mode 100644
index 0000000..8d6651d
Binary files /dev/null and b/2019-chang-field-synthesis/FieldSynthesis/images/FieldSynthesisTheorem_1.png differ
diff --git a/2019-chang-field-synthesis/FieldSynthesis/images/FieldSynthesisTheorem_2.png b/2019-chang-field-synthesis/FieldSynthesis/images/FieldSynthesisTheorem_2.png
new file mode 100644
index 0000000..2a4eab3
Binary files /dev/null and b/2019-chang-field-synthesis/FieldSynthesis/images/FieldSynthesisTheorem_2.png differ
diff --git a/2019-chang-field-synthesis/FieldSynthesis/images/FieldSynthesisVersusLattice.png b/2019-chang-field-synthesis/FieldSynthesis/images/FieldSynthesisVersusLattice.png
new file mode 100644
index 0000000..aa43b23
Binary files /dev/null and b/2019-chang-field-synthesis/FieldSynthesis/images/FieldSynthesisVersusLattice.png differ
diff --git a/2019-chang-field-synthesis/FieldSynthesis/images/FieldSynthesisVersusLattice_Profiles.png b/2019-chang-field-synthesis/FieldSynthesis/images/FieldSynthesisVersusLattice_Profiles.png
new file mode 100644
index 0000000..fd5f7fa
Binary files /dev/null and b/2019-chang-field-synthesis/FieldSynthesis/images/FieldSynthesisVersusLattice_Profiles.png differ
diff --git a/2019-chang-field-synthesis/FieldSynthesis/images/createAnnulus_basic.png b/2019-chang-field-synthesis/FieldSynthesis/images/createAnnulus_basic.png
new file mode 100644
index 0000000..e7e2eca
Binary files /dev/null and b/2019-chang-field-synthesis/FieldSynthesis/images/createAnnulus_basic.png differ
diff --git a/2019-chang-field-synthesis/FieldSynthesis/images/createAnnulus_bessel.png b/2019-chang-field-synthesis/FieldSynthesis/images/createAnnulus_bessel.png
new file mode 100644
index 0000000..d453994
Binary files /dev/null and b/2019-chang-field-synthesis/FieldSynthesis/images/createAnnulus_bessel.png differ
diff --git a/2019-chang-field-synthesis/FieldSynthesis/pdf/FieldSynthesisProofIllustration.pdf b/2019-chang-field-synthesis/FieldSynthesis/pdf/FieldSynthesisProofIllustration.pdf
new file mode 100644
index 0000000..60825a3
Binary files /dev/null and b/2019-chang-field-synthesis/FieldSynthesis/pdf/FieldSynthesisProofIllustration.pdf differ
diff --git a/2019-chang-field-synthesis/FieldSynthesis/pdf/FieldSynthesisProofIllustrationNonIdeal.pdf b/2019-chang-field-synthesis/FieldSynthesis/pdf/FieldSynthesisProofIllustrationNonIdeal.pdf
new file mode 100644
index 0000000..9e79cbc
Binary files /dev/null and b/2019-chang-field-synthesis/FieldSynthesis/pdf/FieldSynthesisProofIllustrationNonIdeal.pdf differ
diff --git a/2019-chang-field-synthesis/LICENSE.txt b/2019-chang-field-synthesis/LICENSE.txt
new file mode 100644
index 0000000..f288702
--- /dev/null
+++ b/2019-chang-field-synthesis/LICENSE.txt
@@ -0,0 +1,674 @@
+ GNU GENERAL PUBLIC LICENSE
+ Version 3, 29 June 2007
+
+ Copyright (C) 2007 Free Software Foundation, Inc.
+ Everyone is permitted to copy and distribute verbatim copies
+ of this license document, but changing it is not allowed.
+
+ Preamble
+
+ The GNU General Public License is a free, copyleft license for
+software and other kinds of works.
+
+ The licenses for most software and other practical works are designed
+to take away your freedom to share and change the works. By contrast,
+the GNU General Public License is intended to guarantee your freedom to
+share and change all versions of a program--to make sure it remains free
+software for all its users. We, the Free Software Foundation, use the
+GNU General Public License for most of our software; it applies also to
+any other work released this way by its authors. You can apply it to
+your programs, too.
+
+ When we speak of free software, we are referring to freedom, not
+price. Our General Public Licenses are designed to make sure that you
+have the freedom to distribute copies of free software (and charge for
+them if you wish), that you receive source code or can get it if you
+want it, that you can change the software or use pieces of it in new
+free programs, and that you know you can do these things.
+
+ To protect your rights, we need to prevent others from denying you
+these rights or asking you to surrender the rights. Therefore, you have
+certain responsibilities if you distribute copies of the software, or if
+you modify it: responsibilities to respect the freedom of others.
+
+ For example, if you distribute copies of such a program, whether
+gratis or for a fee, you must pass on to the recipients the same
+freedoms that you received. You must make sure that they, too, receive
+or can get the source code. And you must show them these terms so they
+know their rights.
+
+ Developers that use the GNU GPL protect your rights with two steps:
+(1) assert copyright on the software, and (2) offer you this License
+giving you legal permission to copy, distribute and/or modify it.
+
+ For the developers' and authors' protection, the GPL clearly explains
+that there is no warranty for this free software. For both users' and
+authors' sake, the GPL requires that modified versions be marked as
+changed, so that their problems will not be attributed erroneously to
+authors of previous versions.
+
+ Some devices are designed to deny users access to install or run
+modified versions of the software inside them, although the manufacturer
+can do so. This is fundamentally incompatible with the aim of
+protecting users' freedom to change the software. The systematic
+pattern of such abuse occurs in the area of products for individuals to
+use, which is precisely where it is most unacceptable. Therefore, we
+have designed this version of the GPL to prohibit the practice for those
+products. If such problems arise substantially in other domains, we
+stand ready to extend this provision to those domains in future versions
+of the GPL, as needed to protect the freedom of users.
+
+ Finally, every program is threatened constantly by software patents.
+States should not allow patents to restrict development and use of
+software on general-purpose computers, but in those that do, we wish to
+avoid the special danger that patents applied to a free program could
+make it effectively proprietary. To prevent this, the GPL assures that
+patents cannot be used to render the program non-free.
+
+ The precise terms and conditions for copying, distribution and
+modification follow.
+
+ TERMS AND CONDITIONS
+
+ 0. Definitions.
+
+ "This License" refers to version 3 of the GNU General Public License.
+
+ "Copyright" also means copyright-like laws that apply to other kinds of
+works, such as semiconductor masks.
+
+ "The Program" refers to any copyrightable work licensed under this
+License. Each licensee is addressed as "you". "Licensees" and
+"recipients" may be individuals or organizations.
+
+ To "modify" a work means to copy from or adapt all or part of the work
+in a fashion requiring copyright permission, other than the making of an
+exact copy. The resulting work is called a "modified version" of the
+earlier work or a work "based on" the earlier work.
+
+ A "covered work" means either the unmodified Program or a work based
+on the Program.
+
+ To "propagate" a work means to do anything with it that, without
+permission, would make you directly or secondarily liable for
+infringement under applicable copyright law, except executing it on a
+computer or modifying a private copy. Propagation includes copying,
+distribution (with or without modification), making available to the
+public, and in some countries other activities as well.
+
+ To "convey" a work means any kind of propagation that enables other
+parties to make or receive copies. Mere interaction with a user through
+a computer network, with no transfer of a copy, is not conveying.
+
+ An interactive user interface displays "Appropriate Legal Notices"
+to the extent that it includes a convenient and prominently visible
+feature that (1) displays an appropriate copyright notice, and (2)
+tells the user that there is no warranty for the work (except to the
+extent that warranties are provided), that licensees may convey the
+work under this License, and how to view a copy of this License. If
+the interface presents a list of user commands or options, such as a
+menu, a prominent item in the list meets this criterion.
+
+ 1. Source Code.
+
+ The "source code" for a work means the preferred form of the work
+for making modifications to it. "Object code" means any non-source
+form of a work.
+
+ A "Standard Interface" means an interface that either is an official
+standard defined by a recognized standards body, or, in the case of
+interfaces specified for a particular programming language, one that
+is widely used among developers working in that language.
+
+ The "System Libraries" of an executable work include anything, other
+than the work as a whole, that (a) is included in the normal form of
+packaging a Major Component, but which is not part of that Major
+Component, and (b) serves only to enable use of the work with that
+Major Component, or to implement a Standard Interface for which an
+implementation is available to the public in source code form. A
+"Major Component", in this context, means a major essential component
+(kernel, window system, and so on) of the specific operating system
+(if any) on which the executable work runs, or a compiler used to
+produce the work, or an object code interpreter used to run it.
+
+ The "Corresponding Source" for a work in object code form means all
+the source code needed to generate, install, and (for an executable
+work) run the object code and to modify the work, including scripts to
+control those activities. However, it does not include the work's
+System Libraries, or general-purpose tools or generally available free
+programs which are used unmodified in performing those activities but
+which are not part of the work. For example, Corresponding Source
+includes interface definition files associated with source files for
+the work, and the source code for shared libraries and dynamically
+linked subprograms that the work is specifically designed to require,
+such as by intimate data communication or control flow between those
+subprograms and other parts of the work.
+
+ The Corresponding Source need not include anything that users
+can regenerate automatically from other parts of the Corresponding
+Source.
+
+ The Corresponding Source for a work in source code form is that
+same work.
+
+ 2. Basic Permissions.
+
+ All rights granted under this License are granted for the term of
+copyright on the Program, and are irrevocable provided the stated
+conditions are met. This License explicitly affirms your unlimited
+permission to run the unmodified Program. The output from running a
+covered work is covered by this License only if the output, given its
+content, constitutes a covered work. This License acknowledges your
+rights of fair use or other equivalent, as provided by copyright law.
+
+ You may make, run and propagate covered works that you do not
+convey, without conditions so long as your license otherwise remains
+in force. You may convey covered works to others for the sole purpose
+of having them make modifications exclusively for you, or provide you
+with facilities for running those works, provided that you comply with
+the terms of this License in conveying all material for which you do
+not control copyright. Those thus making or running the covered works
+for you must do so exclusively on your behalf, under your direction
+and control, on terms that prohibit them from making any copies of
+your copyrighted material outside their relationship with you.
+
+ Conveying under any other circumstances is permitted solely under
+the conditions stated below. Sublicensing is not allowed; section 10
+makes it unnecessary.
+
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
+
+ No covered work shall be deemed part of an effective technological
+measure under any applicable law fulfilling obligations under article
+11 of the WIPO copyright treaty adopted on 20 December 1996, or
+similar laws prohibiting or restricting circumvention of such
+measures.
+
+ When you convey a covered work, you waive any legal power to forbid
+circumvention of technological measures to the extent such circumvention
+is effected by exercising rights under this License with respect to
+the covered work, and you disclaim any intention to limit operation or
+modification of the work as a means of enforcing, against the work's
+users, your or third parties' legal rights to forbid circumvention of
+technological measures.
+
+ 4. Conveying Verbatim Copies.
+
+ You may convey verbatim copies of the Program's source code as you
+receive it, in any medium, provided that you conspicuously and
+appropriately publish on each copy an appropriate copyright notice;
+keep intact all notices stating that this License and any
+non-permissive terms added in accord with section 7 apply to the code;
+keep intact all notices of the absence of any warranty; and give all
+recipients a copy of this License along with the Program.
+
+ You may charge any price or no price for each copy that you convey,
+and you may offer support or warranty protection for a fee.
+
+ 5. Conveying Modified Source Versions.
+
+ You may convey a work based on the Program, or the modifications to
+produce it from the Program, in the form of source code under the
+terms of section 4, provided that you also meet all of these conditions:
+
+ a) The work must carry prominent notices stating that you modified
+ it, and giving a relevant date.
+
+ b) The work must carry prominent notices stating that it is
+ released under this License and any conditions added under section
+ 7. This requirement modifies the requirement in section 4 to
+ "keep intact all notices".
+
+ c) You must license the entire work, as a whole, under this
+ License to anyone who comes into possession of a copy. This
+ License will therefore apply, along with any applicable section 7
+ additional terms, to the whole of the work, and all its parts,
+ regardless of how they are packaged. This License gives no
+ permission to license the work in any other way, but it does not
+ invalidate such permission if you have separately received it.
+
+ d) If the work has interactive user interfaces, each must display
+ Appropriate Legal Notices; however, if the Program has interactive
+ interfaces that do not display Appropriate Legal Notices, your
+ work need not make them do so.
+
+ A compilation of a covered work with other separate and independent
+works, which are not by their nature extensions of the covered work,
+and which are not combined with it such as to form a larger program,
+in or on a volume of a storage or distribution medium, is called an
+"aggregate" if the compilation and its resulting copyright are not
+used to limit the access or legal rights of the compilation's users
+beyond what the individual works permit. Inclusion of a covered work
+in an aggregate does not cause this License to apply to the other
+parts of the aggregate.
+
+ 6. Conveying Non-Source Forms.
+
+ You may convey a covered work in object code form under the terms
+of sections 4 and 5, provided that you also convey the
+machine-readable Corresponding Source under the terms of this License,
+in one of these ways:
+
+ a) Convey the object code in, or embodied in, a physical product
+ (including a physical distribution medium), accompanied by the
+ Corresponding Source fixed on a durable physical medium
+ customarily used for software interchange.
+
+ b) Convey the object code in, or embodied in, a physical product
+ (including a physical distribution medium), accompanied by a
+ written offer, valid for at least three years and valid for as
+ long as you offer spare parts or customer support for that product
+ model, to give anyone who possesses the object code either (1) a
+ copy of the Corresponding Source for all the software in the
+ product that is covered by this License, on a durable physical
+ medium customarily used for software interchange, for a price no
+ more than your reasonable cost of physically performing this
+ conveying of source, or (2) access to copy the
+ Corresponding Source from a network server at no charge.
+
+ c) Convey individual copies of the object code with a copy of the
+ written offer to provide the Corresponding Source. This
+ alternative is allowed only occasionally and noncommercially, and
+ only if you received the object code with such an offer, in accord
+ with subsection 6b.
+
+ d) Convey the object code by offering access from a designated
+ place (gratis or for a charge), and offer equivalent access to the
+ Corresponding Source in the same way through the same place at no
+ further charge. You need not require recipients to copy the
+ Corresponding Source along with the object code. If the place to
+ copy the object code is a network server, the Corresponding Source
+ may be on a different server (operated by you or a third party)
+ that supports equivalent copying facilities, provided you maintain
+ clear directions next to the object code saying where to find the
+ Corresponding Source. Regardless of what server hosts the
+ Corresponding Source, you remain obligated to ensure that it is
+ available for as long as needed to satisfy these requirements.
+
+ e) Convey the object code using peer-to-peer transmission, provided
+ you inform other peers where the object code and Corresponding
+ Source of the work are being offered to the general public at no
+ charge under subsection 6d.
+
+ A separable portion of the object code, whose source code is excluded
+from the Corresponding Source as a System Library, need not be
+included in conveying the object code work.
+
+ A "User Product" is either (1) a "consumer product", which means any
+tangible personal property which is normally used for personal, family,
+or household purposes, or (2) anything designed or sold for incorporation
+into a dwelling. In determining whether a product is a consumer product,
+doubtful cases shall be resolved in favor of coverage. For a particular
+product received by a particular user, "normally used" refers to a
+typical or common use of that class of product, regardless of the status
+of the particular user or of the way in which the particular user
+actually uses, or expects or is expected to use, the product. A product
+is a consumer product regardless of whether the product has substantial
+commercial, industrial or non-consumer uses, unless such uses represent
+the only significant mode of use of the product.
+
+ "Installation Information" for a User Product means any methods,
+procedures, authorization keys, or other information required to install
+and execute modified versions of a covered work in that User Product from
+a modified version of its Corresponding Source. The information must
+suffice to ensure that the continued functioning of the modified object
+code is in no case prevented or interfered with solely because
+modification has been made.
+
+ If you convey an object code work under this section in, or with, or
+specifically for use in, a User Product, and the conveying occurs as
+part of a transaction in which the right of possession and use of the
+User Product is transferred to the recipient in perpetuity or for a
+fixed term (regardless of how the transaction is characterized), the
+Corresponding Source conveyed under this section must be accompanied
+by the Installation Information. But this requirement does not apply
+if neither you nor any third party retains the ability to install
+modified object code on the User Product (for example, the work has
+been installed in ROM).
+
+ The requirement to provide Installation Information does not include a
+requirement to continue to provide support service, warranty, or updates
+for a work that has been modified or installed by the recipient, or for
+the User Product in which it has been modified or installed. Access to a
+network may be denied when the modification itself materially and
+adversely affects the operation of the network or violates the rules and
+protocols for communication across the network.
+
+ Corresponding Source conveyed, and Installation Information provided,
+in accord with this section must be in a format that is publicly
+documented (and with an implementation available to the public in
+source code form), and must require no special password or key for
+unpacking, reading or copying.
+
+ 7. Additional Terms.
+
+ "Additional permissions" are terms that supplement the terms of this
+License by making exceptions from one or more of its conditions.
+Additional permissions that are applicable to the entire Program shall
+be treated as though they were included in this License, to the extent
+that they are valid under applicable law. If additional permissions
+apply only to part of the Program, that part may be used separately
+under those permissions, but the entire Program remains governed by
+this License without regard to the additional permissions.
+
+ When you convey a copy of a covered work, you may at your option
+remove any additional permissions from that copy, or from any part of
+it. (Additional permissions may be written to require their own
+removal in certain cases when you modify the work.) You may place
+additional permissions on material, added by you to a covered work,
+for which you have or can give appropriate copyright permission.
+
+ Notwithstanding any other provision of this License, for material you
+add to a covered work, you may (if authorized by the copyright holders of
+that material) supplement the terms of this License with terms:
+
+ a) Disclaiming warranty or limiting liability differently from the
+ terms of sections 15 and 16 of this License; or
+
+ b) Requiring preservation of specified reasonable legal notices or
+ author attributions in that material or in the Appropriate Legal
+ Notices displayed by works containing it; or
+
+ c) Prohibiting misrepresentation of the origin of that material, or
+ requiring that modified versions of such material be marked in
+ reasonable ways as different from the original version; or
+
+ d) Limiting the use for publicity purposes of names of licensors or
+ authors of the material; or
+
+ e) Declining to grant rights under trademark law for use of some
+ trade names, trademarks, or service marks; or
+
+ f) Requiring indemnification of licensors and authors of that
+ material by anyone who conveys the material (or modified versions of
+ it) with contractual assumptions of liability to the recipient, for
+ any liability that these contractual assumptions directly impose on
+ those licensors and authors.
+
+ All other non-permissive additional terms are considered "further
+restrictions" within the meaning of section 10. If the Program as you
+received it, or any part of it, contains a notice stating that it is
+governed by this License along with a term that is a further
+restriction, you may remove that term. If a license document contains
+a further restriction but permits relicensing or conveying under this
+License, you may add to a covered work material governed by the terms
+of that license document, provided that the further restriction does
+not survive such relicensing or conveying.
+
+ If you add terms to a covered work in accord with this section, you
+must place, in the relevant source files, a statement of the
+additional terms that apply to those files, or a notice indicating
+where to find the applicable terms.
+
+ Additional terms, permissive or non-permissive, may be stated in the
+form of a separately written license, or stated as exceptions;
+the above requirements apply either way.
+
+ 8. Termination.
+
+ You may not propagate or modify a covered work except as expressly
+provided under this License. Any attempt otherwise to propagate or
+modify it is void, and will automatically terminate your rights under
+this License (including any patent licenses granted under the third
+paragraph of section 11).
+
+ However, if you cease all violation of this License, then your
+license from a particular copyright holder is reinstated (a)
+provisionally, unless and until the copyright holder explicitly and
+finally terminates your license, and (b) permanently, if the copyright
+holder fails to notify you of the violation by some reasonable means
+prior to 60 days after the cessation.
+
+ Moreover, your license from a particular copyright holder is
+reinstated permanently if the copyright holder notifies you of the
+violation by some reasonable means, this is the first time you have
+received notice of violation of this License (for any work) from that
+copyright holder, and you cure the violation prior to 30 days after
+your receipt of the notice.
+
+ Termination of your rights under this section does not terminate the
+licenses of parties who have received copies or rights from you under
+this License. If your rights have been terminated and not permanently
+reinstated, you do not qualify to receive new licenses for the same
+material under section 10.
+
+ 9. Acceptance Not Required for Having Copies.
+
+ You are not required to accept this License in order to receive or
+run a copy of the Program. Ancillary propagation of a covered work
+occurring solely as a consequence of using peer-to-peer transmission
+to receive a copy likewise does not require acceptance. However,
+nothing other than this License grants you permission to propagate or
+modify any covered work. These actions infringe copyright if you do
+not accept this License. Therefore, by modifying or propagating a
+covered work, you indicate your acceptance of this License to do so.
+
+ 10. Automatic Licensing of Downstream Recipients.
+
+ Each time you convey a covered work, the recipient automatically
+receives a license from the original licensors, to run, modify and
+propagate that work, subject to this License. You are not responsible
+for enforcing compliance by third parties with this License.
+
+ An "entity transaction" is a transaction transferring control of an
+organization, or substantially all assets of one, or subdividing an
+organization, or merging organizations. If propagation of a covered
+work results from an entity transaction, each party to that
+transaction who receives a copy of the work also receives whatever
+licenses to the work the party's predecessor in interest had or could
+give under the previous paragraph, plus a right to possession of the
+Corresponding Source of the work from the predecessor in interest, if
+the predecessor has it or can get it with reasonable efforts.
+
+ You may not impose any further restrictions on the exercise of the
+rights granted or affirmed under this License. For example, you may
+not impose a license fee, royalty, or other charge for exercise of
+rights granted under this License, and you may not initiate litigation
+(including a cross-claim or counterclaim in a lawsuit) alleging that
+any patent claim is infringed by making, using, selling, offering for
+sale, or importing the Program or any portion of it.
+
+ 11. Patents.
+
+ A "contributor" is a copyright holder who authorizes use under this
+License of the Program or a work on which the Program is based. The
+work thus licensed is called the contributor's "contributor version".
+
+ A contributor's "essential patent claims" are all patent claims
+owned or controlled by the contributor, whether already acquired or
+hereafter acquired, that would be infringed by some manner, permitted
+by this License, of making, using, or selling its contributor version,
+but do not include claims that would be infringed only as a
+consequence of further modification of the contributor version. For
+purposes of this definition, "control" includes the right to grant
+patent sublicenses in a manner consistent with the requirements of
+this License.
+
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
+patent license under the contributor's essential patent claims, to
+make, use, sell, offer for sale, import and otherwise run, modify and
+propagate the contents of its contributor version.
+
+ In the following three paragraphs, a "patent license" is any express
+agreement or commitment, however denominated, not to enforce a patent
+(such as an express permission to practice a patent or covenant not to
+sue for patent infringement). To "grant" such a patent license to a
+party means to make such an agreement or commitment not to enforce a
+patent against the party.
+
+ If you convey a covered work, knowingly relying on a patent license,
+and the Corresponding Source of the work is not available for anyone
+to copy, free of charge and under the terms of this License, through a
+publicly available network server or other readily accessible means,
+then you must either (1) cause the Corresponding Source to be so
+available, or (2) arrange to deprive yourself of the benefit of the
+patent license for this particular work, or (3) arrange, in a manner
+consistent with the requirements of this License, to extend the patent
+license to downstream recipients. "Knowingly relying" means you have
+actual knowledge that, but for the patent license, your conveying the
+covered work in a country, or your recipient's use of the covered work
+in a country, would infringe one or more identifiable patents in that
+country that you have reason to believe are valid.
+
+ If, pursuant to or in connection with a single transaction or
+arrangement, you convey, or propagate by procuring conveyance of, a
+covered work, and grant a patent license to some of the parties
+receiving the covered work authorizing them to use, propagate, modify
+or convey a specific copy of the covered work, then the patent license
+you grant is automatically extended to all recipients of the covered
+work and works based on it.
+
+ A patent license is "discriminatory" if it does not include within
+the scope of its coverage, prohibits the exercise of, or is
+conditioned on the non-exercise of one or more of the rights that are
+specifically granted under this License. You may not convey a covered
+work if you are a party to an arrangement with a third party that is
+in the business of distributing software, under which you make payment
+to the third party based on the extent of your activity of conveying
+the work, and under which the third party grants, to any of the
+parties who would receive the covered work from you, a discriminatory
+patent license (a) in connection with copies of the covered work
+conveyed by you (or copies made from those copies), or (b) primarily
+for and in connection with specific products or compilations that
+contain the covered work, unless you entered into that arrangement,
+or that patent license was granted, prior to 28 March 2007.
+
+ Nothing in this License shall be construed as excluding or limiting
+any implied license or other defenses to infringement that may
+otherwise be available to you under applicable patent law.
+
+ 12. No Surrender of Others' Freedom.
+
+ If conditions are imposed on you (whether by court order, agreement or
+otherwise) that contradict the conditions of this License, they do not
+excuse you from the conditions of this License. If you cannot convey a
+covered work so as to satisfy simultaneously your obligations under this
+License and any other pertinent obligations, then as a consequence you may
+not convey it at all. For example, if you agree to terms that obligate you
+to collect a royalty for further conveying from those to whom you convey
+the Program, the only way you could satisfy both those terms and this
+License would be to refrain entirely from conveying the Program.
+
+ 13. Use with the GNU Affero General Public License.
+
+ Notwithstanding any other provision of this License, you have
+permission to link or combine any covered work with a work licensed
+under version 3 of the GNU Affero General Public License into a single
+combined work, and to convey the resulting work. The terms of this
+License will continue to apply to the part which is the covered work,
+but the special requirements of the GNU Affero General Public License,
+section 13, concerning interaction through a network will apply to the
+combination as such.
+
+ 14. Revised Versions of this License.
+
+ The Free Software Foundation may publish revised and/or new versions of
+the GNU General Public License from time to time. Such new versions will
+be similar in spirit to the present version, but may differ in detail to
+address new problems or concerns.
+
+ Each version is given a distinguishing version number. If the
+Program specifies that a certain numbered version of the GNU General
+Public License "or any later version" applies to it, you have the
+option of following the terms and conditions either of that numbered
+version or of any later version published by the Free Software
+Foundation. If the Program does not specify a version number of the
+GNU General Public License, you may choose any version ever published
+by the Free Software Foundation.
+
+ If the Program specifies that a proxy can decide which future
+versions of the GNU General Public License can be used, that proxy's
+public statement of acceptance of a version permanently authorizes you
+to choose that version for the Program.
+
+ Later license versions may give you additional or different
+permissions. However, no additional obligations are imposed on any
+author or copyright holder as a result of your choosing to follow a
+later version.
+
+ 15. Disclaimer of Warranty.
+
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
+APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
+HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
+OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
+THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
+IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
+ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
+
+ 16. Limitation of Liability.
+
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
+WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
+THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
+GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
+USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
+DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
+PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
+EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
+SUCH DAMAGES.
+
+ 17. Interpretation of Sections 15 and 16.
+
+ If the disclaimer of warranty and limitation of liability provided
+above cannot be given local legal effect according to their terms,
+reviewing courts shall apply local law that most closely approximates
+an absolute waiver of all civil liability in connection with the
+Program, unless a warranty or assumption of liability accompanies a
+copy of the Program in return for a fee.
+
+ END OF TERMS AND CONDITIONS
+
+ How to Apply These Terms to Your New Programs
+
+ If you develop a new program, and you want it to be of the greatest
+possible use to the public, the best way to achieve this is to make it
+free software which everyone can redistribute and change under these terms.
+
+ To do so, attach the following notices to the program. It is safest
+to attach them to the start of each source file to most effectively
+state the exclusion of warranty; and each file should have at least
+the "copyright" line and a pointer to where the full notice is found.
+
+
+ Copyright (C)
+
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see .
+
+Also add information on how to contact you by electronic and paper mail.
+
+ If the program does terminal interaction, make it output a short
+notice like this when it starts in an interactive mode:
+
+ Copyright (C)
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
+ This is free software, and you are welcome to redistribute it
+ under certain conditions; type `show c' for details.
+
+The hypothetical commands `show w' and `show c' should show the appropriate
+parts of the General Public License. Of course, your program's commands
+might be different; for a GUI interface, you would use an "about box".
+
+ You should also get your employer (if you work as a programmer) or school,
+if any, to sign a "copyright disclaimer" for the program, if necessary.
+For more information on this, and how to apply and follow the GNU GPL, see
+.
+
+ The GNU General Public License does not permit incorporating your program
+into proprietary programs. If your program is a subroutine library, you
+may consider it more useful to permit linking proprietary applications with
+the library. If this is what you want to do, use the GNU Lesser General
+Public License instead of this License. But first, please read
+.
diff --git a/2019-chang-field-synthesis/README.md b/2019-chang-field-synthesis/README.md
new file mode 100644
index 0000000..83dd1ff
--- /dev/null
+++ b/2019-chang-field-synthesis/README.md
@@ -0,0 +1,323 @@
+# FieldSynthesis
+
+## Abstract
+
+We introduce Field Synthesis, a theorem and method that can be used to synthesize any scanned or dithered light-sheet, including those used in lattice light-sheet microscopy (LLSM), from an incoherent superposition of one-dimensional intensity distributions. Compared to LLSM, this user-friendly and modular approach offers a simplified optical design, higher light-throughput and simultaneous multicolor illumination. Further, Field Synthesis achieves lower rates of photobleaching than light-sheets generated by lateral beam scanning.
+## Manuscript
+
+
+Bo-Jui Chang1,\*, Mark Kittisopikul2,4,\*, Kevin M. Dean1,3, Phillipe Roudot1,3, Erik Welf1,3 and Reto Fiolka1,3.
+"Universal Light-Sheet Generation with Field Synthesis."
+
+### Affiliations
+1. Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA.
+2. Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, USA.
+3. Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA.
+4. Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
+
+\* These authors contributed equally to this work
+
+### Correspondence
+
+[Reto.Fiolka@utsouthwestern.edu](mailto:Reto.Fiolka@utsouthwestern.edu)
+
+### Publication
+
+[Bo-Jui Chang, Mark Kittisopikul, Kevin M. Dean, Philippe Roudot, Erik S. Welf & Reto Fiolka. "Universal light-sheet generation with field synthesis." Nature Methods. doi:10.1038/s41592-019-0327-9. 2019.](https://doi.org/10.1038/s41592-019-0327-9)
+
+### BioRxiv Preprint
+[https://www.biorxiv.org/content/early/2018/09/26/427468](https://www.biorxiv.org/content/early/2018/09/26/427468)
+
+## Proof
+
+The canonical proof can be found in the supplemental information of the manuscript. Here we also have also included
+[an illustrated proof for the Field Synthesis Theorem in the form of a MATLAB Live Script](https://mkitti.github.io/FieldSynthesis/FieldSynthesis/FieldSynthesisProofIllustration.html) [(PDF)](https://mkitti.github.io/FieldSynthesis/FieldSynthesis/pdf/FieldSynthesisProofIllustration.pdf).
+
+A more [general Field Synthesis Theorem proof for the an arbitrary, non-ideal line profile](https://mkitti.github.io/FieldSynthesis/FieldSynthesis/FieldSynthesisProofIllustrationNonIdeal.html) [(PDF)](https://mkitti.github.io/FieldSynthesis/FieldSynthesis/pdf/FieldSynthesisProofIllustrationNonIdeal.pdf)is now also available.
+
+## System Requirements
+
+To retrieve code:
+* Git 2.18.0 or above
+
+For MATLAB code:
+* [MATLAB (2017a or above), Mathworks, Natick, MA](https://www.mathworks.com/support/sysreq.html)
+ * Image Processing Toolbox
+ * Follow MATLAB link above for operating system requirements
+
+For Python code:
+* Python 3.6.2 or above
+ * NumPy
+ * SciPy
+ * Matplotlib
+
+## Installation and Demo
+
+Typical Install Time: 5 minutes
+
+git clone https://github.com/AdvancedImagingUTSW/FieldSynthesis.git
+
+See below documentation for demonstration. Typical run time: 10 minutes
+
+## MATLAB Code
+
+### [FieldSynthesisTheorem.m](FieldSynthesis/FieldSynthesisTheorem.m)
+
+ Small program to illustrate a new Field Synthesis Theorem.
+
+ In essence it says that the projection of the absolute modulus of a
+ complex field is the same as when one takes a sliding window in the
+ Fourier domain, makes an inverse FFT of each slice, take the absolute
+ modulus of that and sum it up while moving the window through the
+ spectrum. This has important applications for scanned light-sheets and
+ how to generate them.
+
+ Reto Fiolka, May 2017
+ Mark Kittisopikul, May 2017 - Aug 2018
+
+ #### INPUT
+ * efield - electric field at the focal plane, may be real or complex
+ valued
+
+ #### OUTPUT
+ * efield - electric field at the focal plane
+ * slice - intensity of illumination pattern by field synthesis
+ * smear - intensity of illumination pattern by dithering
+ * Q - Fourier transform of individual line scan without phasing,a=10
+ * T - Fourier transform of individual line scan with phasing,a=10
+
+```matlab
+FieldSynthesisTheorem.m;
+```
+
+
+
+
+
+### [FieldSynthesisInteractive.m](FieldSynthesis/FieldSynthesisInteractive.m)
+
+FieldSynthesisInteractive Create an interactive line scan demonstration of
+field synthesis
+
+ #### INPUT
+ * mask - mask at the pupil, which is the Fourier transform of electrical
+ field at the focal plane. zeroth frequency should be in the
+ middle. ifftshift will be applied for calcualtions.
+ * doshift - if true, shift the Fourier transform of the mask so the first
+ pixel is in the center of the image rather than the upper left
+ * lineProfile - line profile for the scan in the pupil mask
+ EITHER:
+ 1) 0 for a delta function line scan
+ 2) a positive double value indicating the sigma of the
+ gaussianLine in pixels
+ 3) a line profile vector the same width as mask. The main
+ peak is expected to be in the center and ifftshift
+ will be applied
+
+ #### OUTPUT
+ * hfig - handle for the display figure
+
+ #### INTERACTIVE
+ * The button in the lower left plays / pauses the movie.
+ * The arrow buttons on the slider will move the scan by one column.
+ * Clicking on the trough of the slider will move the scan by five columns.
+ * The button in the lower right labeled R will reset the cumulative view.
+
+ #### DISPLAY
+ The display consists of 6 panels
+ 1 2 3
+ 4 5 6
+ 1. The pupil mask, |\hat{F}|^2 in log scale
+ 2. The object domain, |F|^2, scanning left to right
+ Line plot indicates beam intensity
+ 3. Dithered, averaged intensity. Cumulative sum of display #2
+ 4. Display of the real component of the electric field of an insteaneous
+ scan, Real{T_a}
+ 5. Instaneous scan intensity, |T_a|^2
+ 6. Cumulative scan intensity of display #5
+
+ #### EXAMPLE
+```matlab
+ FieldSynthesisInteractive; % default demonstration with cameraman
+```
+
+
+```matlab
+ FieldSynthesisInteractive(createAnnulus(),true); % demonstrate a Bessel beam
+```
+
+
+
+```matlab
+ %Create a sinc profile to emulate a scan over a finite range
+ N = 128;
+ x = -ceil(N/2):floor(N/2-1)
+ L_hat = fftshift(fft(ifftshift(abs(x) < 30)));
+ FieldSynthesisInteractive(createAnnulus(),true,L_hat);
+```
+
+ Mark Kittisopikul , August 2018
+ Goldman Lab
+ Northwestern University
+
+### [FieldSynthesisVersusLattice.m](FieldSynthesis/FieldSynthesisVersusLattice.m)
+
+Simulation for field synthesis
+
+ compares field synthesis vs square lattice
+
+
+ Reto, May 2017
+ Mark Kittisopikul, August 2018
+
+ #### INPUT
+ * n - Defines the size of the image and mask to be n x n
+ * w - Width of the mask components
+ * r - Radius of the annulus (width is centered on the annulus)
+ * offset - Offset of the side components of the square lattice
+ * dispRange - Set which part of mask to display in figures
+
+ #### OUTPUT
+ * out - struct containing workspace of this function
+
+```matlab
+FieldSynthesisVersusLattice.m
+```
+
+
+
+
+
+### [createAnnulus.m](FieldSynthesis/createAnnulus.m)
+
+ #### INPUT (all optional)
+ * n - size of the annular mask as a scalar, or vector with coordinates
+ * r - radius of the annulus in pixels
+ * w - width of the annulus in pixels
+
+ #### OUTPUT
+ * annulus - n x n matrix with the annulus marked with ones
+
+ #### USAGE
+```matlab
+ figure;
+ imshow(createAnnulus(256,32,4),[]);
+```
+
+
+
+ Create Bessel beam 2D profile
+```matlab
+ figure;
+ imshow(log(abs(fftshift(ifft2(ifftshift(createAnnulus)))).^2+1),[]);
+ colormap(gca,hot);
+ caxis([0 6e-4]);
+```
+
+
+
+ #### REMARKS
+ This could be streamlined using the bresenham circle algorithm
+
+ Mark Kittisopikul, August 25th, 2018
+ Lab of Robert D. Goldman
+ Northwestern University
+
+
+## Python code - [fieldSynthesis.py](python/fieldSynthesis.py)
+
+ ### USAGE
+
+From a shell:
+```shell
+ python fieldSynthesis.py
+```
+
+From inside IPython:
+```python
+ from fieldSynthesis.py import *
+ demoFieldSynthesis()
+```
+
+
+
+ ### createAnnulus
+```python
+def createAnnulus(n=256, r=32, w=4):
+ ''' createAnnulus - create a ring-like structure
+ INPUT
+ n - size of square array or vector
+ r - radius of the ring
+ w - width of the ring
+ OUTPUT
+ an array n x n
+ '''
+```
+
+ ### doConventionalScan
+```python
+def doConventionalScan(Fsqmod,Lsqmod):
+ '''Simulate Conventional digital scanning / dithering
+ INPUT
+ F_sqmod - Square modulus of F at the front focal plane
+ L_sqmod - Square modulus of L at the front focal plane
+ OUTPUT
+ scanned - Scanned (dithered) intensity of Fsqmod by Lsqmod
+ '''
+```
+
+ ### doConventionalScanHat
+```python
+def doConventionalScanHat(F_hat,L_hat):
+ '''Simulate Conventional digital scanning / dithering from frequency space representations
+ INPUT
+ F_hat - Mask at back focal plane
+ L_hat - Line scan profile in frequency space at the back focal plane
+ OUTPUT
+ scanned - Scanned (dithered) intensity of Fsqmod by Lsqmod at front focal plane
+ '''
+```
+
+### doFieldSynthesisLineScan
+```python
+def doFieldSynthesisLineScan(F_hat,L_hat):
+ '''Simulate Field Synthesis Method
+ INPUT
+ F_hat - Frequency space representation of illumination pattern, mask at back focal plane
+ L_hat - Line scan profile in frequency space at the back focal plane
+ OUTPUT
+ fieldSynthesis - Field synthesis construction by doing a line scan in the back focal plane
+ '''
+```
+
+### demoFieldSynthesis
+```python
+def demoFieldSynthesis():
+ '''Demonstrate Field Synthesis Method with Plots
+ INPUT
+ None
+ OUTPUT
+ None
+ '''
+```
+
+## License
+
+ See LICENSE.txt
+
+ Field Synthesis Demonstration - MATLAB code to demonstrate field synthesis light sheet microscopy
+ Copyright (C) 2019 Reto Fioka, University of Texas Southwestern Medical Center
+ Copyright (C) 2019 Mark Kittisopikul, Northwestern University
+
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see .
diff --git a/2019-chang-field-synthesis/_config.yml b/2019-chang-field-synthesis/_config.yml
new file mode 100644
index 0000000..c741881
--- /dev/null
+++ b/2019-chang-field-synthesis/_config.yml
@@ -0,0 +1 @@
+theme: jekyll-theme-slate
\ No newline at end of file
diff --git a/2019-chang-field-synthesis/images/FieldSynthesisInteractive.png b/2019-chang-field-synthesis/images/FieldSynthesisInteractive.png
new file mode 100644
index 0000000..3ed9dee
Binary files /dev/null and b/2019-chang-field-synthesis/images/FieldSynthesisInteractive.png differ
diff --git a/2019-chang-field-synthesis/images/FieldSynthesisInteractive_bessel.png b/2019-chang-field-synthesis/images/FieldSynthesisInteractive_bessel.png
new file mode 100644
index 0000000..03b9716
Binary files /dev/null and b/2019-chang-field-synthesis/images/FieldSynthesisInteractive_bessel.png differ
diff --git a/2019-chang-field-synthesis/images/FieldSynthesisTheorem_1.png b/2019-chang-field-synthesis/images/FieldSynthesisTheorem_1.png
new file mode 100644
index 0000000..8d6651d
Binary files /dev/null and b/2019-chang-field-synthesis/images/FieldSynthesisTheorem_1.png differ
diff --git a/2019-chang-field-synthesis/images/FieldSynthesisTheorem_2.png b/2019-chang-field-synthesis/images/FieldSynthesisTheorem_2.png
new file mode 100644
index 0000000..2a4eab3
Binary files /dev/null and b/2019-chang-field-synthesis/images/FieldSynthesisTheorem_2.png differ
diff --git a/2019-chang-field-synthesis/images/FieldSynthesisVersusLattice.png b/2019-chang-field-synthesis/images/FieldSynthesisVersusLattice.png
new file mode 100644
index 0000000..aa43b23
Binary files /dev/null and b/2019-chang-field-synthesis/images/FieldSynthesisVersusLattice.png differ
diff --git a/2019-chang-field-synthesis/images/FieldSynthesisVersusLattice_Profiles.png b/2019-chang-field-synthesis/images/FieldSynthesisVersusLattice_Profiles.png
new file mode 100644
index 0000000..fd5f7fa
Binary files /dev/null and b/2019-chang-field-synthesis/images/FieldSynthesisVersusLattice_Profiles.png differ
diff --git a/2019-chang-field-synthesis/images/createAnnulus_basic.png b/2019-chang-field-synthesis/images/createAnnulus_basic.png
new file mode 100644
index 0000000..e7e2eca
Binary files /dev/null and b/2019-chang-field-synthesis/images/createAnnulus_basic.png differ
diff --git a/2019-chang-field-synthesis/images/createAnnulus_bessel.png b/2019-chang-field-synthesis/images/createAnnulus_bessel.png
new file mode 100644
index 0000000..d453994
Binary files /dev/null and b/2019-chang-field-synthesis/images/createAnnulus_bessel.png differ
diff --git a/2019-chang-field-synthesis/images/fieldSynthesisPy.png b/2019-chang-field-synthesis/images/fieldSynthesisPy.png
new file mode 100644
index 0000000..c21ef59
Binary files /dev/null and b/2019-chang-field-synthesis/images/fieldSynthesisPy.png differ
diff --git a/2019-chang-field-synthesis/python/fieldSynthesis.py b/2019-chang-field-synthesis/python/fieldSynthesis.py
new file mode 100644
index 0000000..719b2a7
--- /dev/null
+++ b/2019-chang-field-synthesis/python/fieldSynthesis.py
@@ -0,0 +1,198 @@
+import numpy as np
+import scipy as sci
+import scipy.fftpack as ft
+import scipy.signal as sig
+from scipy.stats import norm
+import matplotlib.pyplot as plt
+
+''' Field Synthesis
+Python-based demonstration of Field Synthesis
+
+supplementary material to:
+ Universal Light-Sheet Generation with Field Synthesis
+ Bo-Jui Chang, Mark Kittisopikul, Kevin M. Dean, Phillipe Roudot, Erik Welf and Reto Fiolka.
+
+Mark Kittisopikul
+Goldman Lab
+Northwestern University
+
+November 2018
+
+Field Synthesis Demonstration -
+Python code to demonstrate field synthesis light sheet microscopy
+Copyright (C) 2019 Reto Fioka,
+ University of Texas Southwestern Medical Center
+Copyright (C) 2019 Mark Kittisopikul,
+ Northwestern University
+This program is free software: you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation, either version 3 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program. If not, see .
+'''
+
+def createAnnulus(n=256, r=32, w=4):
+ ''' createAnnulus - create a ring-like structure
+ INPUT
+ n - size of square array or vector
+ r - radius of the ring
+ w - width of the ring
+ OUTPUT
+ an array n x n
+ '''
+ if np.isscalar(n):
+ v = np.arange(n)
+ v = v - np.floor(n/2)
+ else:
+ v = n
+
+ y,x = np.meshgrid(v,v)
+ q = np.hypot(x,y)
+ annulus = abs(q-r) < w
+ return annulus
+
+def doConventionalScan(Fsqmod,Lsqmod):
+ '''Simulate Conventional digital scanning / dithering
+ INPUT
+ F_sqmod - Square modulus of F at the front focal plane
+ L_sqmod - Square modulus of L at the front focal plane
+ OUTPUT
+ scanned - Scanned (dithered) intensity of Fsqmod by Lsqmod
+ '''
+ # Manually scan by shifting Fsqmod and multiplying by Lsqmod
+ scanned = np.zeros(Fsqmod.shape)
+ center = Lsqmod.shape[1]//2
+
+ for x in range(np.size(Fsqmod,1)):
+ scanned = scanned + np.roll(Fsqmod,x-center,1)*Lsqmod[center,x]
+
+ return scanned
+
+def doConventionalScanHat(F_hat,L_hat):
+ '''Simulate Conventional digital scanning / dithering from frequency space representations
+ INPUT
+ F_hat - Mask at back focal plane
+ L_hat - Line scan profile in frequency space at the back focal plane
+ OUTPUT
+ scanned - Scanned (dithered) intensity of Fsqmod by Lsqmod at front focal plane
+ '''
+ F_hat = ft.ifftshift(F_hat)
+ F = ft.ifft2(F_hat)
+ F = ft.fftshift(F)
+ # This is the illumination intensity pattern
+ Fsqmod = np.real(F*np.conj(F))
+
+ L_hat = ft.ifftshift(L_hat)
+ L = ft.ifft2(L_hat)
+ L = ft.fftshift(L)
+ Lsqmod = L*np.conj(L)
+
+ scanned = doConventionalScan(Fsqmod,Lsqmod)
+ return scanned
+
+
+def doFieldSynthesisLineScan(F_hat,L_hat):
+ '''Simulate Field Synthesis Method
+ INPUT
+ F_hat - Frequency space representation of illumination pattern, mask at back focal plane
+ L_hat - Line scan profile in frequency space at the back focal plane
+ OUTPUT
+ fieldSynthesis - Field synthesis construction by doing a line scan in the back focal plane
+ '''
+ # Do the Field Synthesis method of performing a line scan at the back focal plane
+ fieldSynthesis = np.zeros_like(F_hat)
+
+ for a in range(fieldSynthesis.shape[1]):
+ # Instaneous scan in frequency space
+ T_hat_a = F_hat * np.roll(L_hat,a-fieldSynthesis.shape[1]//2,1)
+ # Instaneous scan in object space
+ T_a = ft.fftshift( ft.fft2( ft.ifftshift(T_hat_a) ) )
+ # Incoherent summing of the intensities
+ fieldSynthesis = fieldSynthesis + np.abs(T_a)**2
+
+ return fieldSynthesis
+
+def demoFieldSynthesis():
+ '''Demonstrate Field Synthesis Method with Plots
+ INPUT
+ None
+ OUTPUT
+ None
+ '''
+ # plt.rc('text', usetex=True)
+ fig, ax = plt.subplots(2,4,sharey=True,sharex=True,figsize=(16,9))
+
+ # Create F, the illumination pattern
+ F_hat = createAnnulus()
+ F_hat = ft.ifftshift(F_hat)
+ F = ft.ifft2(F_hat)
+ F = ft.fftshift(F)
+ # This is the illumination intensity pattern
+ Fsqmod = np.real(F*np.conj(F))
+
+ #plt.figure()
+ #plt.title('F')
+ #plt.imshow(Fsqmod, cmap='plasma')
+ #plt.show(block=False)
+ ax[0,0].imshow(Fsqmod, cmap='plasma')
+ ax[0,0].set_title('F(x,z)')
+
+ # Create L, the scan profile
+ L = np.zeros_like(Fsqmod)
+ center = L.shape[1]//2
+ sigma = 30
+ L[center,:] = norm.pdf(np.arange(-center,center),0,sigma)
+ # L[L.shape[1]//2,:] = 1
+ # The square modulus of L is the object space
+ Lsqmod = L*np.conj(L)
+ # This is the line scan profile used in Field Synthesis
+ L_hat = ft.fftshift(ft.fft2(ft.ifftshift(L)))
+
+ ax[0,1].imshow(L, cmap='plasma')
+ ax[0,1].set_title('$ L(x)\delta(z) $')
+
+ ax[0,2].imshow(Lsqmod, cmap='plasma')
+ ax[0,2].set_title('$ |L(x)\delta(z)|^2 $')
+
+ ax[0,3].imshow(np.abs(L_hat), cmap='plasma')
+ ax[0,3].set_title('$\hat{L}(k_x) $')
+
+ # Manually scan by shifting Fsqmod and multiplying by Lsqmod
+ scanned = doConventionalScan(Fsqmod,Lsqmod)
+
+ ax[1,0].imshow(scanned, cmap='plasma')
+ ax[1,0].set_title('Scanned: $ \sum_{x\'} |F(x\',z)|^2|L(x-x\')|^2 $')
+
+ # Manually scanning is a convolution operation
+ # There are potentially boundary effects here
+ convolved = sig.fftconvolve(Fsqmod,Lsqmod,'same')
+
+ ax[1,1].imshow(convolved, cmap='plasma')
+ ax[1,1].set_title('Convolved: $ |F(x,z)|^2 ** |L(x)\delta(z)|^2 $')
+
+ # This manual implementation of Fourier transform based convolution
+ # actually does circular convolution
+ convolvedft = ft.fftshift(ft.fft2(ft.ifft2(ft.ifftshift(Fsqmod)) *ft.ifft2(ft.ifftshift(Lsqmod))))
+ convolvedft = np.real(convolvedft)
+
+ ax[1,2].imshow(convolvedft, cmap='plasma')
+ ax[1,2].set_title(r'Convolved FT: $ \mathcal{F}^{-1} \{ \mathcal{F}\{|F|^2\} \mathcal{F}\{|L(x)\delta(z)|^2\} \} $')
+
+ # Do the Field Synthesis method of performing a line scan at the back focal plane
+ fieldSynthesis = doFieldSynthesisLineScan(F_hat,L_hat)
+
+ ax[1,3].imshow(fieldSynthesis, cmap='plasma')
+ ax[1,3].set_title('Field Synthesis: $ \sum_a |\mathcal{F}^{-1}\{ \hat{F}(k_x,k_z)\hat{L}(k_x-a) \}|^2 $')
+
+ plt.show()
+ plt.pause(0.001)
+
+if __name__ == "__main__":
+ demoFieldSynthesis()
diff --git a/2020-chang-systematic-comparison/FS_analysis_v11_20200331.m b/2020-chang-systematic-comparison/FS_analysis_v11_20200331.m
new file mode 100644
index 0000000..e161432
--- /dev/null
+++ b/2020-chang-systematic-comparison/FS_analysis_v11_20200331.m
@@ -0,0 +1,769 @@
+clc; clear all;
+tic
+%% Input section
+imagePath = '/archive/bioinformatics/Danuser_lab/Fiolka/MicroscopeDevelopment/Lattice/Data_Gaussian/NA0.55,0.52/200322';
+file_interest = 'Cell'; %'Squ_0,93,-93_1.00_'
+number_interest = [5:12]; %%[1,2,3-5]
+ChannelstoProcess= [1];
+%y_ROI {1} = [1151:1200];
+%y_ROI {2} = [1201:1250];
+%y_ROI {3} = [1251:1300];
+%y_ROI {4} = [1301:1350];
+%y_ROI {5} = [1351:1400];
+%y_ROI {6} = [1401:1450];
+y_ROI {1} = [151:200];
+y_ROI {2} = [201:250];
+y_ROI {3} = [251:300];
+y_ROI {4} = [301:350];
+y_ROI {5} = [351:400];
+y_ROI {6} = [401:450];
+
+%pixelsToAverage_xy = 100;
+%pixelsToAverage_xz = size(y_ROI{1},2);
+fitRange=100; % Laterally, pixels above and below the center laterally,
+fitSize=100; % Laterally, pixels to fit around the main peak, above and below the center, 3 for Bessel, 7 for HexLattice, 100 for SquLattice, 4 for 0 order
+fitEdge=10; % Laterally, in pixels,
+%pixelsToAverage_xz = 10;
+fitRangeAxial=61; % Axially, pixels above and below the center.
+fitRayleigh=45; % Axially, pixels above and below the center for Rayleigh range, need to select carefully depending on the data
+cut=2; %numbers of pixels to cut in axial profile because when the light sheet is very tilted, we need to cut some black pixels. Add line 411 on 201801031
+xyPixel= 81.25; %% nm
+zPixel = 812.5; %% nm
+%fitopt=struct('Lower',[50,1,1,1,-5,1,1], ...
+% 'StartPoint',[100,300,257,350,0,10,10], ...
+% 'Upper',[3000,20000,512,700,5,20,200]); %% offset, amplitude, centroid X, centroid Y, angle, width X, width Y
+
+%% simple calculation
+factor=zPixel/xyPixel;
+dataNumber=1;
+
+%% create folders
+dir_SUMs=fullfile(imagePath,'SUMs');
+mkdir(dir_SUMs);
+mkdir(fullfile(dir_SUMs,'XY'))
+mkdir(fullfile(dir_SUMs,'XY_focus'))
+mkdir(fullfile(dir_SUMs,'XZ'))
+mkdir(fullfile(dir_SUMs,'YZ'))
+mkdir(fullfile(dir_SUMs,'analysis'))
+
+%% MIPs
+
+if size(number_interest,2)==0
+ n = 1;
+else
+ n = size(number_interest,2);
+end
+
+result=['name'];
+for r=1:size(y_ROI,2)
+ title1=strcat('thickness_',num2str(min(y_ROI{r})),'-',num2str(max(y_ROI{r})));
+ title2=strcat('length_',num2str(min(y_ROI{r})),'-',num2str(max(y_ROI{r})));
+ title3=strcat('confocal parameter_',num2str(min(y_ROI{r})),'-',num2str(max(y_ROI{r})));
+ result=horzcat(result,{title1,title2,title3});
+end
+
+for n1=1:n
+ if size(number_interest,2)==0
+ names1 = file_interest;
+ else
+ names1 = strcat(file_interest,num2str(number_interest(n1)));
+ end
+
+
+ mkdir(fullfile(dir_SUMs,'XY',names1));
+ mkdir(fullfile(dir_SUMs,'XZ',names1));
+ mkdir(fullfile(dir_SUMs,'YZ',names1));
+ mkdir(fullfile(dir_SUMs,'three',names1));
+ mkdir(fullfile(dir_SUMs,'XY_focus',names1));
+ %mkdir(fullfile(dir_SUMs,'analysis',names1));
+ analysisname = strcat(names1,'_fitSize',num2str(fitSize),'_fitRayleigh',num2str(fitRayleigh));
+ mkdir(fullfile(dir_SUMs,'analysis',analysisname));
+ %names2 = dir(fullfile(imagePath,names1));
+
+ %% save parameters
+fileID=fopen([fullfile(dir_SUMs,'analysis',analysisname),'/note.txt'],'wt');
+fprintf(fileID,'%s%s%s\r\n','xyPixel= ',num2str(xyPixel),' nm');
+fprintf(fileID,'%s%s%s\r\n','zPixelF= ',num2str(zPixel),' nm');
+fprintf(fileID,'%s%s\r\n','fitRange= ',num2str(fitRange));
+fprintf(fileID,'%s%s\r\n','fitSize= ',num2str(fitSize));
+fprintf(fileID,'%s%s\r\n','fitEdge= ',num2str(fitEdge));
+fprintf(fileID,'%s%s\r\n','fitRangeAxial= ',num2str(fitRangeAxial));
+fprintf(fileID,'%s%s\r\n','fitRayleigh= ',num2str(fitRayleigh));
+fprintf(fileID,'%s%s\r\n','cut= ',num2str(cut));
+
+ filename=strcat('1_CH',num2str(ChannelstoProcess,'%02.0f'),'_000000.tif');
+
+ tic
+ filepath=fullfile(imagePath,names1,filename);
+ %filepath=fullfile(imagePath,names1,names2(3).name);
+ %imageFile = double(zeros(imageInfo(1).Width,imageInfo(1).Height,length(imageInfo)));
+ InfoImage=imfinfo(filepath);
+ mImage=InfoImage(1).Height;
+ nImage=InfoImage(1).Width;
+ NumberImages=length(InfoImage);
+
+ FinalImage=zeros(mImage,nImage,NumberImages,'uint16');
+ [vx,vy]=meshgrid(1:1/factor:NumberImages,1:nImage);
+ [vx2,vy2]=meshgrid(1:1/factor:NumberImages,1:mImage);
+ three=zeros(mImage+size(vx,2),nImage+size(vy,2));
+ clear SUM*
+
+ TifLink = Tiff(filepath, 'r');
+for i=1:NumberImages
+ TifLink.setDirectory(i);
+ FinalImage(:,:,i)=TifLink.read();
+end
+TifLink.close();
+
+FinalImage=double(FinalImage);
+
+[M,I] = max(max(max(FinalImage)));
+
+center=FinalImage(:,:,I);
+imwrite(uint16(center),fullfile(dir_SUMs,'XY_focus',names1,strcat('XY_',num2str(I),'_',filename)));
+%imwrite(uint16(center),fullfile(dir_SUMs,'XY_focus',names1,strcat('XY_',num2str(I),'_',names2(3).name)));
+
+
+sumxy=zeros(mImage,nImage);
+for i=1:NumberImages
+ sumxy(:,:)=sumxy(:,:)+FinalImage(:,:,i);
+end
+sumxy=sumxy./NumberImages;
+
+sumxz=zeros(mImage,NumberImages);
+for i=1:mImage
+ tempxz(:,:)=FinalImage(i,:,:);
+ sumxz(:,:)=sumxz(:,:)+tempxz(:,:);
+end
+sumxz=sumxz./mImage;
+
+sumyz=zeros(nImage,NumberImages);
+for i=1:nImage
+ tempyz(:,:)=FinalImage(:,i,:);
+ sumyz(:,:)=sumyz+tempyz(:,:);
+end
+sumyz=sumyz./nImage;
+
+sumxz2=flipud(rot90(interp2(sumxz,vx,vy)));
+sumyz2=interp2(sumyz,vx2,vy2);
+
+three(1:mImage,1:nImage)=sumxy;
+three(mImage+1:size(three,1),1:nImage)=sumxz2;
+three(1:mImage,nImage+1:size(three,2))=sumyz2;
+
+imwrite(uint16(sumxy),fullfile(dir_SUMs,'XY',names1,strcat('XY_',filename)));
+imwrite(uint16(sumxz2),fullfile(dir_SUMs,'XZ',names1,strcat('XZ_',filename)));
+imwrite(uint16(sumyz2),fullfile(dir_SUMs,'YZ',names1,strcat('YZ_',filename)));
+imwrite(uint16(three),fullfile(dir_SUMs,'three',names1,strcat('three_',filename)));
+%imwrite(uint16(sumxy),fullfile(dir_SUMs,'XY',names1,strcat('XY_',names2(3).name)));
+%imwrite(uint16(sumxz2),fullfile(dir_SUMs,'XZ',names1,strcat('XZ_',names2(3).name)));
+%imwrite(uint16(sumyz2),fullfile(dir_SUMs,'YZ',names1,strcat('YZ_',names2(3).name)));
+%imwrite(uint16(three),fullfile(dir_SUMs,'three',names1,strcat('three_',names2(3).name)));
+
+result_temp=[];
+lateral_raw=[];
+axial_raw=[];
+confocal_raw=[];
+
+%% Preparing for rotating the stack in xy (laterally)
+ %% Identify in-focus image-plane in Z.
+ planeMaxs = zeros(size(FinalImage,3),1);
+ planeNumber = 1:1:size(FinalImage,3);
+ parfor planeIdx = 5:1:size(FinalImage,3)-5
+ planeMaxs(planeIdx) = max(max(FinalImage(:,:,planeIdx)));
+ end
+
+ % Fit model to data.
+ [xData, yData] = prepareCurveData( planeNumber, planeMaxs );
+ ft = fittype( 'a1*exp(-((x-b1)/c1)^2)+d');
+ opts = fitoptions( 'Method', 'NonlinearLeastSquares' );
+ opts.Display = 'Off'; opts.Lower = [0 0 1 0];
+ opts.StartPoint = [max(planeMaxs) size(FinalImage,3)/2 10 planeMaxs(1)];
+ opts.Upper = [max(planeMaxs)*2 Inf Inf max(planeMaxs)];
+ [fitresult, gof] = fit( xData, yData, ft, opts );
+ inFocusIdx = round(fitresult.b1);
+
+ %% Analyze In-Focus Image
+ % Isolate the Beam Waist
+ %inFocusPlane = imageVol(:,:,inFocusIdx);
+ inFocusPlane = FinalImage(:,:,inFocusIdx);
+ figure(1); imagesc(inFocusPlane);
+ % Background Subtract
+ inFocusPlane = inFocusPlane-min(inFocusPlane(:));
+
+ parfor i = 1:1:size(inFocusPlane,1);
+ [locs(i), pks(i)] = max(inFocusPlane(i,:));
+ end
+
+ % Fit model to data.
+ [xData, yData] = prepareCurveData([1:size(inFocusPlane,1)], double(pks));
+ ft = fittype( 'a1*x+b1', 'independent', 'x', 'dependent', 'y' );
+ opts = fitoptions( 'Method', 'NonlinearLeastSquares' );
+ opts.Display = 'Off';
+ opts.Lower = [-Inf 0];
+ opts.StartPoint = [0 mean(pks)];
+ opts.Upper = [Inf Inf];
+ [fitresult, gof] = fit( xData, yData, ft, opts );
+ inFocusIdx = round(fitresult.b1);
+ rotAngleXY=atand(-fitresult.a1);
+ % Rotate the Data To Account for Non-Perfect Alignment
+ inFocusRotatePlane = imrotate(inFocusPlane,rotAngleXY,'bicubic');
+ figure(1); imagesc(inFocusRotatePlane);
+ disp(['Real rotAngleXY = ' num2str(rotAngleXY), ' degree']);
+% subplot(1,3,1);
+% h = plot( fitresult, xData, yData );
+% legend( h, 'Beam Rotation', 'Linear Fit', 'Location', 'NorthEast' );
+% subplot(1,3,2:3);
+% imshowpair(inFocusPlane,inFocusRotatePlane,'montage');
+
+%% Preparing for rotating the stack in xz direction (axially)
+ % use the whole stack to rotate a little in xz direction.
+ % 1. average the profile in xz direction.
+ % 2. select a range (fitRangeAxial).
+ % 3. fit Gaussian curve to each z position
+ % 4. use the center of each fitted curve to determine the rotation angle.
+ close all
+ FinalImage2=squeeze(mean(FinalImage,1));
+ [pks1, locs1] = max(FinalImage2);
+ [M,I]=max(pks1);
+ %FinalImage2=FinalImage2(:,(I-fitRangeAxial):(I+fitRangeAxial));
+ center=floor(size(FinalImage2,2)/2)+1;
+ FinalImage2=FinalImage2(:,(center-fitRangeAxial):(center+fitRangeAxial));
+ figure(2);imagesc(FinalImage2);
+
+ xData=(1:size(FinalImage2,1));
+
+ for planeIdx = 1:size(FinalImage2,2)
+ [xData, yData] = prepareCurveData(xData,FinalImage2(:,planeIdx));
+ ft = fittype( 'a1*exp(-((x-b1)/c1)^2)+d', 'independent', 'x', 'dependent', 'y' );
+ opts = fitoptions( 'Method', 'NonlinearLeastSquares' );
+ opts.Display = 'Off';
+ %opts.Lower = [10 0 0 0];
+ opts.StartPoint = [max(FinalImage2(:,planeIdx)) size(FinalImage2,1)/2 20 min(FinalImage2(:,planeIdx))];
+ %opts.Upper = [max(planeMaxs)*2 Inf Inf max(planeMaxs)];
+ [fitresult, gof] = fit( xData, yData, ft, opts );
+ b1(planeIdx)=fitresult.b1;
+ end
+
+ [xData, yData] = prepareCurveData(1:size(b1,2), b1(:));
+ ft = fittype( 'a1*x+b1', 'independent', 'x', 'dependent', 'y' );
+ opts = fitoptions( 'Method', 'NonlinearLeastSquares' );
+ opts.Display = 'Off';
+ opts.Lower = [-Inf 0];
+ opts.StartPoint = [0 mean(b1(:))];
+ opts.Upper = [Inf Inf];
+ [fitresult, gof] = fit( xData, yData, ft, opts );
+ figure(3);plot(fitresult,xData,yData);
+ rotAngleXZ=atand(fitresult.a1);
+ FinalImage2Rotate = imrotate(FinalImage2,rotAngleXZ,'bicubic','crop');
+ figure(2); imagesc(FinalImage2Rotate);
+ disp(['Real rotAngleXZ = ' num2str(atand(fitresult.a1/factor)), ' degree']);
+%% Measure the light-sheet properties in each ROI
+
+for r=1:size(y_ROI,2)
+sumxz_ROI=zeros(mImage,NumberImages);
+xz_ROI=y_ROI{r};
+pixelsToAverage_xz = size(y_ROI{r},2);
+for i=min(xz_ROI):max(xz_ROI)
+ tempxz_ROI(:,:)=FinalImage(i,:,:);
+ sumxz_ROI(:,:)=sumxz_ROI(:,:)+tempxz_ROI(:,:);
+end
+sumxz_ROI=sumxz_ROI./size(xz_ROI,2);
+sumxz_ROI2=flipud(rot90(interp2(sumxz_ROI,vx,vy)));
+
+newname=strcat('_',num2str(min(xz_ROI)),'-',num2str(max(xz_ROI)));
+mkdir(fullfile(dir_SUMs,strcat('XZ',newname),names1));
+imwrite(uint16(sumxz_ROI2),fullfile(dir_SUMs,strcat('XZ',newname),names1,strcat('XZ_',filename)));
+%imwrite(uint16(sumxz_ROI2),fullfile(dir_SUMs,strcat('XZ',newname),names1,strcat('XZ_',names2(3).name)));
+
+
+ %% Laterally Average beam to Remove Lattice Structure.
+ close all
+
+ inFocusPlane = inFocusRotatePlane;
+ center_ROI= xz_ROI(ceil(end/2));
+
+ %pixelsToAverage=10;
+ %beamLateralCrossSection = inFocusPlane(size(inFocusPlane,2)/2-round(pixelsToAverage_xy/2):size(inFocusPlane,2)/2+round(pixelsToAverage_xy/2),:);
+ %beamLateralCrossSection = squeeze(sum(beamLateralCrossSection,1));
+ %beamLateralCrossSection = inFocusPlane(center_ROI-round(pixelsToAverage_xy/2):center_ROI+round(pixelsToAverage_xy/2),:);
+ beamLateralCrossSection = inFocusPlane(center_ROI-round(pixelsToAverage_xz/2):center_ROI+round(pixelsToAverage_xz/2),:);
+ beamLateralCrossSection = squeeze(mean(beamLateralCrossSection,1)); %change from sum to mean @20200401
+
+ % Truncate the Data to Remove Large Region Beyond Beam Focus
+ [~, locs] = max(beamLateralCrossSection);
+ %fitSize = 100;
+ %fitSize = pixelsToAverage_xz;
+ beamLateralCrossSection = beamLateralCrossSection(locs-fitRange:locs+fitRange);
+ %beamLateralCrossSection = beamLateralCrossSection(locs-fitSize:locs+fitSize);
+
+ % Prepare Curve Fit Data, Fittype, and Options
+ pixelNumber = 1:1:size(beamLateralCrossSection,2);
+ xAxis = pixelNumber*xyPixel/1000;
+
+ [xData, yData] = prepareCurveData( xAxis, beamLateralCrossSection );
+ ft = fittype( 'a1*exp(-((x-b1)/c1)^2)+d');
+ %ft = fittype( 'a1*exp(-((x-b1)/c1)^2)+d', 'independent', 'x', 'dependent', 'y' );
+ opts = fitoptions( 'Method', 'NonlinearLeastSquares' );
+ opts.Display = 'Off';
+ startps = [max(beamLateralCrossSection) xData(ceil(end/2),1) (fitSize/2)*xyPixel/1000 mean(beamLateralCrossSection(1:fitEdge))];
+ exclx= ((xData > fitEdge*xyPixel/1000) & (xData < (ceil(size(pixelNumber,2)/2)-fitSize)*xyPixel/1000)) | ((xData > (ceil(size(pixelNumber,2)/2)+fitSize)*xyPixel/1000) & (xData < (length(beamLateralCrossSection)-fitEdge)*xyPixel/1000)) ;
+ %opts.Lower = [0 0 0 0];
+ %opts.StartPoint = [max(beamLateralCrossSection) xData(ceil(end/2),1) (fitSize/2)*xyPixel/1000 mean(beamLateralCrossSection(1:fitEdge))]
+ %opts.Upper = [max(beamLateralCrossSection)*2 Inf Inf max(beamLateralCrossSection)];
+ %opts.Exclude= ((xData > fitEdge*xyPixel/1000) & (xData < (locs-fitSize)*xyPixel/1000)) | ((xData > (locs+fitSize)*xyPixel/1000) & (xData < (length(beamLateralCrossSection)-fitEdge)*xyPixel/1000)) ;
+ % fit(xData, yData,ft,)
+ % Fit model to data.
+ fitresult = fit( xData, yData, ft, 'Start', startps, 'Exclude', exclx );
+ %[fitresult, gof] = fit( xData, yData, ft, opts );
+ %[fitresult, gof] = fit( xData, yData, ftlat, 'Start', StartPoint, 'Exclude', exclx );
+ % Calculate Beam Size
+ beamCenter=fitresult.b1;
+ beamLateralFWHM = 2*sqrt(log(2))*fitresult.c1;
+ disp(['Beam Lateral FWHM in Microns = ' num2str(beamLateralFWHM)])
+
+ % Beam Confinment
+ % 15 pixels is 975 nm
+ [pks, locs] = max(beamLateralCrossSection);
+ inFocus = sum(beamLateralCrossSection(ceil(size(pixelNumber,2)/2)-fitSize:ceil(size(pixelNumber,2)/2)+fitSize));
+ %inFocus = sum(beamLateralCrossSection(locs-fitSize:locs+fitSize));
+ totalIntensity = sum(beamLateralCrossSection);
+ percentInFocus = (inFocus./totalIntensity)*100;
+
+ % Plot fit with data.
+ figure(2)
+ subplot(1,2,1);
+ imshow(inFocusPlane,[]);
+
+ subplot(1,2,2);
+ h = plot( fitresult, xData, yData );
+ legend( h, 'Beam Cross-Section', 'Gaussian Fit', 'Location', 'NorthWest' );
+ xlabel Microns;
+ ylabel Intensity;
+ grid on;
+ xlim([0 max(xData)]);
+ text(5,max(yData),['Beam FWHM = ' num2str(beamLateralFWHM) '\mum'])
+ text(5,max(yData)-max(yData)/10,['% Confinement = ' num2str(percentInFocus)]);
+ legend('off');
+ %print(['Cell' num2str(dataNumber) '_lateral'],'-depsc','-tiff')
+ %savefig(['Cell' num2str(dataNumber) '_lateral']);
+
+ figure(3)
+ h = plot( fitresult, xData, yData );
+ legend( h, 'Beam Cross-Section', 'Gaussian Fit', 'Location', 'NorthWest' );
+ xlabel Microns;
+ ylabel Intensity;
+ grid on;
+ xlim([0 max(xData)]);
+ text(0,max(yData),['Beam FWHM = ' num2str(beamLateralFWHM) '\mum'])
+ text(0,max(yData)-max(yData)/10,['% Confinement = ' num2str(percentInFocus)]);
+ legend('off');
+ title(['Beam FWHM = ' num2str(beamLateralFWHM),' um']);
+
+ %saveas(figure(3),fullfile(dir_SUMs,'analysis',names1,strcat('xy_',names2(3).name)));
+ %saveas(figure(3),fullfile(dir_SUMs,'analysis',names1,strcat('xy',newname,'.tif')));
+ saveas(figure(3),fullfile(dir_SUMs,'analysis',analysisname,strcat('xy',newname,'.tif')));
+
+ lateral_raw(1:length(xData),2*r-1)=xData;
+ lateral_raw(1:length(yData),2*r)=yData;
+ %%
+ % for Cell 6, should be exactly 10 pixels apart. 10Hz?
+ %close all
+
+ dataFFT = fft(yData,size(yData,1));
+ Pyy = dataFFT.*conj(dataFFT)/size(yData,1);
+ f = 1/size(yData,1)*(0:floor(size(yData,1)./2));
+ figure (1)
+ plot(f,Pyy(1:round(size(yData,1)./2)))
+ %f = 103, Pyy = 101.
+ title('Power spectral density')
+ xlabel('Frequency (Hz)')
+ set(gca, 'XScale', 'log')
+ %print(['Cell' num2str(dataNumber) '_fft'],'-depsc','-tiff')
+ %savefig(['Cell' num2str(dataNumber) '_fft']);
+
+ %% Measure Light-sheet axial properties
+ % Want to measure how thick the beam is in Z, a the brighest
+ % position of the in-focus image.
+
+ subFinalImage=FinalImage(xz_ROI,:,:);
+ subFinalImage=squeeze(mean(subFinalImage,1));
+ subFinalImage=subFinalImage(:,(center-fitRangeAxial):(center+fitRangeAxial));
+ %subFinalImage=subFinalImage(:,(I-fitRangeAxial):(I+fitRangeAxial));
+ figure(1);
+ subplot(2,1,1);imagesc(subFinalImage);
+ subFinalImage = imrotate(subFinalImage,rotAngleXZ,'bicubic','crop');
+ subplot(2,1,2);imagesc(subFinalImage);
+
+ %% Measure Rayleigh length (confocal parameter)
+
+ [pks1, locs1] = max(subFinalImage);
+ [M,I]=max(pks1);
+ if I-(fitRayleigh+10) <= 1 | I+(fitRayleigh+10) >= size(subFinalImage,2)
+ lowerend = 1
+ upperend = size(subFinalImage,2)
+ %lowerend = round(length(pks1)/2)-(fitRayleigh+10)
+ %upperend = round(length(pks1)/2)+(fitRayleigh+10)
+ else
+ lowerend = I-(fitRayleigh+10)
+ upperend = I+(fitRayleigh+10)
+ end
+
+ %if I-(fitRayleigh+10) <= 1
+ % lowerend = 1
+ %else
+ % lowerend = I-(fitRayleigh+10)
+ %end
+ %if I+(fitRayleigh+10) >= size(subFinalImage,2)
+ % upperend = size(subFinalImage,2)
+ %else
+ % upperend = I+(fitRayleigh+10)
+ %end
+
+ CPImage=subFinalImage(round(mean(locs1))-(fitSize+5):round(mean(locs1))+(fitSize+5),lowerend:upperend);
+ %CPImage=subFinalImage(:,(I-(fitRayleigh+5)):(I+(fitRayleigh+5)));
+
+ xData= 1:size(CPImage,1);
+
+
+ for planeIdx = 1:size(CPImage,2)
+ [xData, yData] = prepareCurveData(xData,CPImage(:,planeIdx));
+ ft = fittype( 'a1*exp(-((x-b1)/c1)^2)+d', 'independent', 'x', 'dependent', 'y' );
+ opts = fitoptions( 'Method', 'NonlinearLeastSquares' );
+ opts.Display = 'Off';
+ %opts.Lower = [10 0 0 0];
+ opts.StartPoint = [max(CPImage(:,planeIdx)) size(CPImage,1)/2 20 min(CPImage(:))];
+ %opts.Upper = [max(planeMaxs)*2 Inf Inf max(planeMaxs)];
+ [fitresult, gof] = fit( xData, yData, ft, opts );
+ rayleighSigma(planeIdx) = (xyPixel*2*sqrt(log(2))*fitresult.c1)/1000;
+ %rayleighSigma(planeIdx) = (xyPixel*sqrt(2*log(2))*fitresult.c1)/1000;
+ end
+
+ rayleighX = 1:1:length(rayleighSigma);
+ rayleighX = rayleighX*zPixel/1000;
+
+ [M,I]=min(rayleighSigma);
+ if I-fitRayleigh <= 1 | I+fitRayleigh >= length(rayleighX)
+ lowerend = round(length(rayleighX)/2)-fitRayleigh
+ upperend = round(length(rayleighX)/2)+fitRayleigh
+ else
+ lowerend = I-fitRayleigh
+ upperend = I+fitRayleigh
+ end
+
+ %x1=rayleighX;
+ x1=rayleighX(lowerend:upperend);
+ %x1=rayleighX(I-fitRayleigh:I+fitRayleigh);
+ %y1=rayleighSigma;
+ y1=rayleighSigma(lowerend:upperend);
+ %y1=rayleighSigma(I-fitRayleigh:I+fitRayleigh);
+ xscale=min(x1):xyPixel/1000:max(x1);
+ rescale=interp1(x1,y1,xscale,'spline');
+ [xData, yData] = prepareCurveData(xscale, rescale);
+
+ % Rayleigh Equation
+ ft = fittype( 'a1*sqrt(1+((x-b1)/c1)^2)', 'independent', 'x', 'dependent', 'y' );
+ opts = fitoptions( 'Method', 'NonlinearLeastSquares' );
+ opts.Display = 'Off';
+ opts.StartPoint = [min(yData) mean(xData) 2];
+ opts.Lower = [min(yData)-0.2 mean(xData)-1 0];
+ opts.Upper = [min(yData)+0.2 mean(xData)+1 20];
+ [fitresult, gof] = fit( xData, yData, ft, opts );
+ Confocal_par= 2*fitresult.c1;
+ figure(4)
+ plot(fitresult,rayleighX,rayleighSigma);
+ xlim([0 max(rayleighX)]);
+ disp(['raw 2w0 in Microns = ' num2str(min(yData))])
+ disp(['2w0 in Microns = ' num2str(fitresult.a1)])
+ disp(['2wr in Microns = ' num2str(fitresult.a1*sqrt(2))])
+ fprintf(fileID,'%s%s%s\r\n','raw 2w0= ',num2str(min(yData)),' um');
+ fprintf(fileID,'%s%s%s\r\n','2w0= ',num2str(fitresult.a1),' um');
+ fprintf(fileID,'%s%s%s\r\n','2wr= ',num2str(fitresult.a1*sqrt(2)),' um');
+ % % Gaussian curve fitting method
+ % ft = fittype( 'a1*exp(((x-b1)/c1)^2)+d', 'independent', 'x', 'dependent', 'y' );
+ % opts = fitoptions( 'Method', 'NonlinearLeastSquares' );
+ % opts.Display = 'Off';
+ % opts.Lower = [-Inf mean(xData)-2 0 -Inf];
+ % opts.StartPoint = [mean(yData) mean(xData) 2 min(yData)];
+ % opts.Upper = [Inf mean(xData)+2 4 Inf];
+ % [fitresult, gof] = fit( xData, yData, ft, opts );
+ %
+ % Rlength = 2*sqrt(log(2))*fitresult.c1;
+ % figure (4)
+ % plot( fitresult, xData, yData )
+
+ % % parabolic curve fitting method
+ % p=polyfit(x1,y1,2); %fit 2nd degree polynomials
+ % %y2=polyval(p,rayleighX);
+ % equ=poly2sym(p);
+ %
+ % fun=matlabFunction(equ);
+ % [s0, p0] = fminbnd(fun,min(rayleighX),max(rayleighX)); %find the minimum of the fitting polynomials
+ % S=vpasolve(equ==sqrt(2)*p0);
+ % Rlength=round(single(abs(S(1)-S(2))),2); %find the Rayleigh length;
+ disp(['Confocal_par. in Microns = ' num2str(Confocal_par)])
+
+ % figure (4)
+ % plot(rayleighX, rayleighSigma);
+ % hold on
+ % %plot(rayleighX,y2);
+ % %hold on
+ % fplot(equ,[min(rayleighX),max(rayleighX)]);
+ % hold off
+
+ xlabel('Microns'); ylabel('Beam Waist (microns)'); grid on;
+ legend('off');
+ title(['Confocal par. = ' num2str(Confocal_par),' um']);
+ %print(['Cell' num2str(dataNumber) '_rayleigh'],'-depsc','-tiff')
+ %savefig(['Cell' num2str(dataNumber) '_rayleigh']);
+ saveas(figure(4),fullfile(dir_SUMs,'analysis',analysisname,strcat('Confocal_par',newname,'.tif')));
+
+ Rayleigh_raw(1:length(rayleighX),2*r-1)=rayleighX;
+ Rayleigh_raw(1:length(rayleighSigma),2*r)=rayleighSigma;
+
+ %% Measure Rayleigh Length (original Rayleigh length measurement, but not what I want ...)
+ % Want to measure how thick the beam is in Z, a the brighest
+ % position of the in-focus image.
+% close all
+%
+% inFocusImage = FinalImage(:,:,inFocusIdx);
+% [pks1, locs1] = max(inFocusImage);
+% [pks2, locs2] = max(pks1);
+%
+% for planeIdx = 1:size(FinalImage,3)
+% [xData, yData] = prepareCurveData(1:size(FinalImage,2), double(FinalImage(locs2,:,planeIdx)));
+% ft = fittype( 'a1*exp(-((x-b1)/c1)^2)+d', 'independent', 'x', 'dependent', 'y' );
+% opts = fitoptions( 'Method', 'NonlinearLeastSquares' );
+% opts.Display = 'Off';
+% opts.Lower = [10 0 0 0];
+% opts.StartPoint = [max(max(FinalImage(:,:,planeIdx))) size(FinalImage,2)/2 40 min(FinalImage(:))];
+% opts.Upper = [max(planeMaxs)*2 Inf Inf max(planeMaxs)];
+% [fitresult, gof] = fit( xData, yData, ft, opts );
+% rayleighSigma(planeIdx) = (xyPixel*2*sqrt(log(2))*fitresult.c1)/1000;
+% %rayleighSigma(planeIdx) = (xyPixel*sqrt(2*log(2))*fitresult.c1)/1000;
+% end
+%
+% rayleighX = 1:1:length(rayleighSigma);
+% rayleighX = rayleighX*zPixel/1000;
+% figure (1)
+% plot(rayleighX, rayleighSigma);
+% xlabel('Beam Length (microns)'); ylabel('Beam Waist (microns)'); grid on;
+% legend('off'); ylim([0 10]);
+% title(['Rayleigh = ' num2str(rayleighSigma(planeIdx))]);
+% %print(['Cell' num2str(dataNumber) '_rayleigh'],'-depsc','-tiff')
+% %savefig(['Cell' num2str(dataNumber) '_rayleigh']);
+% saveas(figure(1),fullfile(dir_SUMs,'analysis',strcat(names1,'_fitSize',num2str(fitSize)),strcat('Rayleigh',newname,'.tif')));
+
+
+ %close all
+
+ % Find Peak
+
+ %% Beam Propagation Length
+
+ [maxAxial, locsAxial] = max(subFinalImage');
+ [~, locsAxialPeak] = max(maxAxial);
+
+ % Remove Line Profile
+ beamPropagation = subFinalImage';
+ beamPropagation = beamPropagation(:,locsAxialPeak);
+ beamPropagation = beamPropagation(cut+1:size(beamPropagation,1)-cut); % when the light sheet is very tilted, we need to cut some black pixels
+
+
+ % Prepare x-Axis in Microns
+ xAxis = (zPixel/1000)*[1:size(beamPropagation,1)];
+
+ % Fit model to data.
+ [xData, yData] = prepareCurveData(xAxis, beamPropagation');
+ ft = fittype( 'a1*exp(-((x-b1)/c1)^2)+d', 'independent', 'x', 'dependent', 'y' );
+ opts = fitoptions( 'Method', 'NonlinearLeastSquares' );
+ opts.Display = 'Off';
+ opts.Lower = [mean(yData) 0 0 min(yData)];
+ opts.StartPoint = [max(yData)-min(yData) mean(xAxis) 5 min(yData)];
+ opts.Upper = [max(beamPropagation)*2 Inf Inf max(beamPropagation)];
+ [fitresult, gof] = fit( xData, yData, ft, opts );
+
+ beamAxialFWHM = 2*sqrt(log(2))*fitresult.c1;
+ disp(['Beam Axial FWHM in Microns = ' num2str(beamAxialFWHM)])
+
+ figure (5)
+ subplot(1,2,1);
+ %imshow(subFinalImage,[]);
+ imagesc(subFinalImage);
+
+ subplot(1,2,2);
+ h = plot( fitresult, xData, yData );
+ xlim([0 max(xData)]);
+ xlabel Microns;
+ ylabel Intensity;
+ grid on
+ legend('off');
+ title(['Beam Length = ' num2str(beamAxialFWHM),' um']);
+ %print(['Cell' num2str(dataNumber) '_axial'],'-depsc','-tiff')
+ %savefig(['Cell' num2str(dataNumber) '_axial']);
+
+ figure(6)
+ h = plot( fitresult, xData, yData );
+ xlim([0 max(xData)]);
+ xlabel Microns;
+ ylabel Intensity;
+ grid on
+ legend('off');
+ title(['Beam Length = ' num2str(beamAxialFWHM),' um']);
+
+ %saveas(figure(3),fullfile(dir_SUMs,'analysis',names1,strcat('xz_',names2(3).name)));
+ %saveas(figure(3),fullfile(dir_SUMs,'analysis',names1,strcat('xz',newname,'.tif')));
+ saveas(figure(6),fullfile(dir_SUMs,'analysis',analysisname,strcat('xz',newname,'.tif')));
+
+ axial_raw(1:length(xData),2*r-1)=xData;
+ axial_raw(1:length(yData),2*r)=yData;
+ %% Beam Propagation Length (original code, but I don't think I need it anymore because I already have the image rotated and can go straight fitting the Gaussian curve @20200402)
+ %close all
+ % Interpolate Z.
+ % % Interpolate the Z-Axis
+
+
+% imageVolInterp = interpolateZ(FinalImage, xyPixel, zPixel);
+% disp('Data Interpolated');
+%
+% % Analyze Central Slice in X-Direction
+% %centralSlice = round(size(imageVolInterp,1)/2);
+% %pixelsToAverage = 100;
+% %axialCrossSection = squeeze(sum(imageVolInterp(centralSlice-round(pixelsToAverage_xz./2):centralSlice+round(pixelsToAverage_xz./2),:,:)));
+% axialCrossSection = squeeze(sum(imageVolInterp(center_ROI-round(pixelsToAverage_xz./2)+1:center_ROI+round(pixelsToAverage_xz./2),:,:)));
+%
+%
+ %% Account for Beam Angle
+% [maxAxial, locsAxial] = max(axialCrossSection);
+% [~, locationAxialFocus] = max(maxAxial);
+%
+% numberPixelsAxial = 100; %was100 was 300
+% startPixel = locationAxialFocus-round(numberPixelsAxial./2);
+% endPixel = locationAxialFocus+round(numberPixelsAxial./2);
+
+% yData = locsAxial(startPixel:endPixel);
+% xData = startPixel:endPixel;
+% % Fit model to data.
+% [xData, yData] = prepareCurveData(xData, yData);
+% ft = fittype( 'a1*x+b1', 'independent', 'x', 'dependent', 'y' );
+% opts = fitoptions( 'Method', 'NonlinearLeastSquares' );
+% opts.Display = 'Off';
+% opts.Lower = [-Inf 0];
+% opts.StartPoint = [0 mean(pks)];
+% opts.Upper = [Inf Inf];
+% [fitresult, gof] = fit( xData, yData, ft, opts );
+% inFocusIdx = round(fitresult.b1);
+
+% % Rotate the Data To Account for Non-Perfect Alignment
+% axialCrossSectionRotate = imrotate(axialCrossSection,atand(fitresult.a1),'bicubic');
+% % subplot(1,3,1);
+% % h = plot(fitresult, xData, yData );
+% % legend( h, 'Max Intensity', 'Linear Fit', 'Location', 'NorthEast' );
+% % subplot(1,3,2:3);
+% % imshowpair(axialCrossSection,axialCrossSectionRotate,'montage');
+%
+
+ %% Analyze the Rotated Data To Determine the Beam Length
+% %close all
+%
+% % Find Peak
+% [maxAxial, locsAxial] = max(axialCrossSectionRotate');
+% [~, locsAxialPeak] = max(maxAxial);
+%
+% % Remove Line Profile
+% beamPropagation = axialCrossSectionRotate';
+% beamPropagation = beamPropagation(:,locsAxialPeak);
+% beamPropagation = beamPropagation(cut+1:size(beamPropagation,1)-cut); % when the light sheet is very tilted, we need to cut some black pixels
+%
+% % Prepare x-Axis in Microns
+% xAxis = (xyPixel/1000)*[1:size(beamPropagation,1)];
+%
+% % Fit model to data.
+% [xData, yData] = prepareCurveData(xAxis, beamPropagation');
+% ft = fittype( 'a1*exp(-((x-b1)/c1)^2)+d', 'independent', 'x', 'dependent', 'y' );
+% opts = fitoptions( 'Method', 'NonlinearLeastSquares' );
+% opts.Display = 'Off';
+% opts.Lower = [mean(yData) 0 0 min(yData)];
+% opts.StartPoint = [max(yData)-min(yData) mean(xAxis) 5 min(yData)];
+% opts.Upper = [max(beamPropagation)*2 Inf Inf max(beamPropagation)];
+% [fitresult, gof] = fit( xData, yData, ft, opts );
+%
+% beamAxialFWHM = 2*sqrt(log(2))*fitresult.c1;
+% disp(['Beam Axial FWHM in Microns = ' num2str(beamAxialFWHM), 'um'])
+%
+% figure (4)
+% subplot(1,2,1);
+% imshow(axialCrossSectionRotate,[]);
+%
+% subplot(1,2,2);
+% h = plot( fitresult, xData, yData );
+% xlim([0 max(xData)]);
+% xlabel Microns;
+% ylabel Intensity;
+% grid on
+% legend('off');
+% title(['Beam Length = ' num2str(beamAxialFWHM)]);
+% print(['Cell' num2str(dataNumber) '_axial'],'-depsc','-tiff')
+% savefig(['Cell' num2str(dataNumber) '_axial']);
+%
+% figure(5)
+% h = plot( fitresult, xData, yData );
+% xlim([0 max(xData)]);
+% xlabel Microns;
+% ylabel Intensity;
+% grid on
+% legend('off');
+% title(['Beam Length = ' num2str(beamAxialFWHM)]);
+
+% %saveas(figure(3),fullfile(dir_SUMs,'analysis',names1,strcat('xz_',names2(3).name)));
+% %saveas(figure(3),fullfile(dir_SUMs,'analysis',names1,strcat('xz',newname,'.tif')));
+% saveas(figure(5),fullfile(dir_SUMs,'analysis',strcat(names1,'_fitSize',num2str(fitSize)),strcat('xz',newname,'.tif')));
+
+%
+% %close (figure(3))
+
+ result_temp=horzcat(result_temp,{beamLateralFWHM,beamAxialFWHM,Confocal_par});
+
+toc
+end
+
+fprintf(fileID,'%s%s%s\r\n','Real rotAngleXY= ',num2str(rotAngleXY),' degree');
+fprintf(fileID,'%s%s%s\r\n','Real rotAngleXZ= ',num2str(rotAngleXZ),' degree');
+fclose(fileID);
+
+ lateralname=fullfile(imagePath,strcat(names1,'_lateral_raw_fitSize',num2str(fitSize),'_fitRayleigh',num2str(fitRayleigh),'.csv'));
+ xlswrite(lateralname,lateral_raw);
+
+ axialname=fullfile(imagePath,strcat(names1,'_axial_raw_fitSize',num2str(fitSize),'_fitRayleigh',num2str(fitRayleigh),'.csv'));
+ xlswrite(axialname,axial_raw);
+
+ Confocalname=fullfile(imagePath,strcat(names1,'_confocal_raw_fitSize',num2str(fitSize),'_fitRayleigh',num2str(fitRayleigh),'.csv'));
+ xlswrite(Confocalname,Rayleigh_raw);
+
+ result=vertcat(result,[names1,result_temp]);
+
+end
+
+%resultname=fullfile(imagePath,strcat(file_interest,num2str(number_interest),'.csv'));
+resultname=fullfile(imagePath,strcat(file_interest,num2str(number_interest),'_fitSize',num2str(fitSize),'_fitRayleigh',num2str(fitRayleigh),'.csv'));
+fid = fopen(resultname,'wt');
+if fid>0
+ for k=1:size(result,1)
+ fprintf(fid,repmat('%s,',[1,size(result,2)]),result{k,:});
+ fprintf(fid,'\r\n');
+ end
+ fclose(fid);
+end
+
+% %lateralname=fullfile(imagePath,strcat(file_interest,num2str(number_interest),'_lateral_raw.csv'));
+% lateralname=fullfile(imagePath,strcat(file_interest,num2str(number_interest),'_lateral_raw_fitSize',num2str(fitSize),'.csv'));
+% xlswrite(lateralname,lateral_raw);
+% %axialname=fullfile(imagePath,strcat(file_interest,num2str(number_interest),'_axial_raw.csv'));
+% axialname=fullfile(imagePath,strcat(file_interest,num2str(number_interest),'_axial_raw_fitSize',num2str(fitSize),'.csv'));
+% xlswrite(axialname,axial_raw);
+% Confocalname=fullfile(imagePath,strcat(file_interest,num2str(number_interest),'_confocal_raw_fitSize',num2str(fitSize),'.csv'));
+% xlswrite(Confocalname,Rayleigh_raw);
+
+toc
+disp('All Done');
+
diff --git a/2020-sapoznik-oblique-plane-microscopy/README.md b/2020-sapoznik-oblique-plane-microscopy/README.md
new file mode 100644
index 0000000..9c72b86
--- /dev/null
+++ b/2020-sapoznik-oblique-plane-microscopy/README.md
@@ -0,0 +1,43 @@
+# A Single-Objective Light-Sheet Microscope with 200 nm-Scale Resolution.
+
+## Abstract
+We present a single-objective light-sheet microscope, also known as an oblique-plane microscope, that uses a bespoke glass-tipped tertiary objective and improves the resolution, field of view, usability, and stability over previous variants. Owing to its high numerical aperture optics, this microscope achieves the highest lateral resolution in light-sheet fluorescence microscopy, and its axial resolution is similar to that of Lattice Light-Sheet Microscopy. Given this performance, we demonstrate high-resolution imaging of clathrin-mediated endocytosis, vimentin, the endoplasmic reticulum, membrane dynamics, and natural killer cell-mediated cell death. Furthermore, we image biological phenomena that would be otherwise challenging or impossible to perform in a traditional light-sheet microscope geometry, including cell migration through a confined space within a microfluidic device, photoactivation of PI3K, and diffusion of cytoplasmic rheological tracers at a volumetric rate of 14 Hz.
+
+## BioRxiv Preprint
+
+## Authors
+Etai Sapoznik (1,2), Bo-Jui Chang (1), Robert J. Ju (3), Erik S. Welf (1,2), David Broadbent (4), Alexandre F. Carisey (5), Samantha J. Stehbens (3), Kyung-min Lee (6), Arnaldo MarÃn (6), Ariella B. Hanker (6), Jens C. Schmidt (4,7), Carlos L. Arteaga (6), Bin Yang (8), Rory Kruithoff (9), Doug P. Shepherd (9), Alfred Millett-Sikking (10), Andrew G. York (10), Kevin M. Dean (1*), Reto Fiolka (1,2*)
+
+## Affiliations
+* 1 – Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
+* 2 – Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
+* 3 – Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia.
+* 4 – Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA.
+* 5 – William T. Shearer Center for Human Immunobiology, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA.
+* 6 – Harold C. Simmons Comprehensive Cancer Center and the Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
+* 7 - Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, MI, USA.
+* 8 – Chan Zuckerberg Biohub, San Francisco, CA, USA.
+* 9 – Department of Physics and the Center for Biological Physics, Arizona State University, Tempe, AZ, USA.
+* 10 – Calico Life Sciences LLC, South San Francisco, CA, USA.
+
+## Correspondence
+* Kevin.Dean@utsouthwestern.edu
+* Reto.Fiolka@utsouthwestern.edu
+
+
+## Software
+Shearing and Deconvolution Routines for OPM (Snouty)
+
+Python and MATLAB routines for shearing and deconvolving data, respectively.
+
+The shearing program was developed in Python 3.6 operating in an Anaconda environment on a Linux operating system. Changes would need to be made in order to use it on a Windows Machine. Use the code at your own risk, and expect bugs. Changes will be made in the future to improve readability and reduce redundancy, but time is of the essence during manuscript submission.
+
+Our data acquisition software saves data according to the following structure: .../cellType/label/date/cell#/1_CH0#_######.tif. Thus, all of the information is provided in the file path itself. A hypothetical example is MCF7/AktPH-GFP/200218/Cell5/1_CH00_000003.tif.
+
+The deskewing software is designed to be operated at the date level of the path. It then goes through that directory, identifies the number of Cell# subdirectories, and then within those directories, the number of channels, and timepoints. It then deskews all of these files in a parallel process. You execute the software as follows: python deskewDirectory.py MCF7/AktPH-GFP/200218/
+
+The lateral pixel size, z step size, oblique illumination angle, and number of parallel threads, is all specified within the function itself.
+
+The deconvolution software is used on the raw, non-sheared data. It uses an experimentally measured PSF as a prior, and updates this PSF with a double blind deconvolution process. This code is written in MATLAB. The experimentally measured PSF needs to have the same voxel dimensions as the data that was acquired, or be appropriately scaled. After deconvolution, the image is then sheared using the aforementioned Python code.
+
+- Kevin Dean
diff --git a/2020-sapoznik-oblique-plane-microscopy/deskewDirectory.py b/2020-sapoznik-oblique-plane-microscopy/deskewDirectory.py
new file mode 100644
index 0000000..3963590
--- /dev/null
+++ b/2020-sapoznik-oblique-plane-microscopy/deskewDirectory.py
@@ -0,0 +1,147 @@
+# Uses python/3.6.4-anaconda.
+# Originally written by Bin Yang, and adapted by Kevin Dean.
+# UTSW microscope software saves data in the form of Cell1/1_CH(channel)_(time).tif
+# Code is designed to parse each Cell#, and identify the number of channels (channel) and timepoints.
+# Works on Linux, would need to be modified for Windows OS.
+# Written by a biochemist, so use at your own risk and expect bugs.
+#
+# python deskewDirectory.py /path/to/your/directory.
+
+import os
+import numpy as np # 1.18.1
+import sys
+import re
+from tifffile import imread, imsave
+from multiprocessing import Pool
+
+# Specify the number of parallel processes you would like to use. Depends on your filesize and available RAM.
+numberThreads = 15
+
+# Specify the size of your Z-step (the scan direction).
+dz = 800
+
+# Specify your lateral pixel size.
+xypixelsize = 115
+
+# Specify the angle of your oblique illumination.
+angle = 30
+
+# Parse the Command Line Inputs
+parent_directory = sys.argv[1]
+
+# Confirm that the string concludes with a forward slash
+if parent_directory.endswith('/'):
+ print(parent_directory)
+else:
+ print('parent directory needs /')
+ parent_directory = parent_directory + '/'
+ print(parent_directory)
+
+def parse_directory(parent_directory):
+ # Determine number of Cell# subdirectories in the parent directory
+ path_contents = os.listdir(parent_directory)
+ loop_idx = 0
+ cell_number = 0
+
+ # Iterate through each experiment. Cell 1, Cell 2, Cell3...
+ for cellIdx in path_contents:
+ if "Cell" in path_contents[cell_number]:
+
+ # Iterate through the contents of each experiment
+ subpath_contents = os.listdir(parent_directory + path_contents[cell_number])
+
+ # Figure out what cell number you are actually looking in...
+ cell_folder_number = path_contents[cell_number]
+ cell_folder_number = int(cell_folder_number[4:])
+
+ file_number = 0
+ for file_idx in subpath_contents:
+ filename = subpath_contents[file_number]
+
+ # Regular Expression to find out the channel.
+ result_1 = re.search("1_CH0(\d)", filename)
+ if result_1 is not None:
+ channel_number = result_1.group(1)
+
+ # Regular Expression to find out the Time Point
+ result_2 = re.search("(\d\d\d\d\d\d)", filename)
+ if result_2 is not None:
+ time_number = result_2.group(1)
+
+ # Regular Expression to Avoid Processing Data that Has Already Been Sheared
+ if not re.search("Shear", filename):
+
+ # Build up matrix for parallel processing
+ if loop_idx == 0:
+ input_arguments = np.array([cell_folder_number, channel_number, time_number])
+ else:
+ new_line = np.array([cell_folder_number, channel_number, time_number])
+ # print(new_line)
+ input_arguments = np.concatenate((input_arguments, new_line), axis=0)
+ loop_idx += 1
+ file_number += 1
+ cell_number += 1
+ size_of_arguments = int(np.size(input_arguments) / 3)
+ parse_output = np.reshape(input_arguments, (size_of_arguments, 3))
+ return parse_output
+
+def deskew(inArray, angle, dz, xypixelsize):
+ (z_len, y_len, x_len) = inArray.shape
+ Trans = np.cos(angle * np.pi / 180) * dz / xypixelsize
+ widenBy = np.uint16(np.ceil(z_len * np.cos(angle * np.pi / 180) * dz / xypixelsize))
+
+ inArrayWiden = np.zeros((z_len, y_len, x_len + widenBy))
+ inArrayWiden[:z_len, :y_len, :x_len] = inArray
+ output = np.zeros((z_len, y_len, x_len + widenBy))
+
+ xF, yF = np.meshgrid(np.arange(x_len + widenBy), np.arange(y_len))
+
+ for k in range(z_len):
+ inSlice = inArrayWiden[k, :, :]
+ inSliceFFT = np.fft.fftshift(np.fft.fft2(inSlice))
+ inSliceFFTTrans = inSliceFFT * np.exp(-1j * 2 * np.pi * xF * Trans * k / (x_len + widenBy))
+ output_temp = np.abs(np.fft.ifft2(np.fft.ifftshift(inSliceFFTTrans)))
+ output[k, :, :] = output_temp
+
+ output[output < 0] = 0
+ return np.uint16(output) # return uint16 data to save as tiff
+
+def process_image(image_info):
+ cellidx, chidx, tidx = image_info
+ chidx = int(chidx)
+ tidx = int(tidx)
+
+ imname = "1_CH0" + str(chidx) + "_" + str(("{:06d}".format(tidx))) + ".tif"
+ imfile = parent_directory + "Cell" + str(cellidx) + "/" + imname
+
+ export_name = imfile.replace('.tif', '') + '_fullShear.tif'
+ exists = os.path.isfile(export_name)
+ if exists:
+ print("Shearing Complete Already")
+ else:
+ print(imfile)
+ imarray = imread(imfile)
+ imarray = deskew(imarray, angle, dz, xypixelsize)
+ imsave(export_name, imarray)
+
+input_arguments = parse_directory(parent_directory)
+indices_to_delete = []
+indexCounter = 0
+for idx in input_arguments:
+ temp = input_arguments[indexCounter]
+ imname = "1_CH0" + str(int(temp[1])) + "_" + str(("{:06d}".format(int(temp[2])))) + ".tif"
+ imfile = parent_directory + "Cell" + str(temp[0]) + "/" + imname
+ export_name = imfile.replace('.tif', '') + '_fullShear.tif'
+ exists = os.path.isfile(export_name)
+ if exists:
+ new_line = np.array([int(indexCounter)])
+ indices_to_delete = np.concatenate((indices_to_delete, new_line), axis=0)
+ indexCounter += 1
+
+# Delete the rows that already have been processed.
+final_input_arguments = np.delete(input_arguments, indices_to_delete, 0)
+
+if __name__ == '__main__':
+ with Pool(numberThreads) as p:
+ p.map(process_image, final_input_arguments)
+print('Complete')
diff --git a/2020-sapoznik-oblique-plane-microscopy/tiffRead.m b/2020-sapoznik-oblique-plane-microscopy/tiffRead.m
new file mode 100644
index 0000000..23e7ebc
--- /dev/null
+++ b/2020-sapoznik-oblique-plane-microscopy/tiffRead.m
@@ -0,0 +1,15 @@
+function [tiffImage]=tiffRead(imagePath)
+
+% Determine Image Properties
+InfoImage=imfinfo(imagePath);
+
+% Pre-allocate Memory
+tiffImage = zeros(InfoImage(1).Height,InfoImage(1).Width,length(InfoImage),'uint16');
+
+% Iteratively Load the Image
+TifLink = Tiff(imagePath, 'r');
+for i=1:length(InfoImage)
+ TifLink.setDirectory(i);
+ tiffImage(:,:,i)=TifLink.read();
+end
+TifLink.close();
diff --git a/2020-sapoznik-oblique-plane-microscopy/tiffWrite.m b/2020-sapoznik-oblique-plane-microscopy/tiffWrite.m
new file mode 100644
index 0000000..14bc86c
--- /dev/null
+++ b/2020-sapoznik-oblique-plane-microscopy/tiffWrite.m
@@ -0,0 +1,19 @@
+function tiffWrite(imData,PSFname)
+
+[nx, ny, nz]= size(imData);
+imgType= class(imData);
+tagstruct.Photometric= Tiff.Photometric.MinIsBlack;
+tagstruct.ImageLength = nx;
+tagstruct.ImageWidth = ny;
+tagstruct.PlanarConfiguration= Tiff.PlanarConfiguration.Chunky;
+tagstruct.Compression = Tiff.Compression.None;
+tagstruct.BitsPerSample= 16;
+tiffFile=Tiff(PSFname, 'w');
+
+for iz=1:nz
+ tiffFile.setTag(tagstruct);
+ tiffFile.write(imData(:,:,iz));
+ tiffFile.writeDirectory();
+
+end
+tiffFile.close();
\ No newline at end of file
diff --git a/2020-sapoznik-oblique-plane-microscopy/twoStepDeconvolution.m b/2020-sapoznik-oblique-plane-microscopy/twoStepDeconvolution.m
new file mode 100644
index 0000000..060afe1
--- /dev/null
+++ b/2020-sapoznik-oblique-plane-microscopy/twoStepDeconvolution.m
@@ -0,0 +1,48 @@
+function twoStepDeconvolution(imageDirectory,imageName,psfPath,numberIterations)
+%% twoStepDeconvolution
+% imagePath is the path to the folder containing the image file.
+% imageName is the name of the image to deconvolve
+% psfPath is the path to the PSF file - e.g., /project/cellbiology/Dean_lab/shared/psfs/ctASLM2-510nm.tif
+% numberIterations is usually set to 10.
+%
+% Written by Bo-Jui Chang, 2019. Verified on Matlab/2019a.
+%%
+outputDirectory=fullfile(imageDirectory,strcat('decon_',num2str(numberIterations))); mkdirRobust(outputDirectory);
+disp(['Data Exporting to ' outputDirectory]);
+
+% load PSF
+PSF = double(tiffRead(psfPath));
+
+% Threshold PSF by bottom 5% & Normalize
+intensityDistribution = sort(PSF(:));
+PSFbackground = mean(intensityDistribution(1:size(PSF(:))/20));
+disp(['The Background Intensity for the PSF is ' num2str(PSFbackground)]);
+%PSF=abs(PSF-PSFbackground);
+PSF=abs(PSF-118);
+
+% Deconvolve the PSF to get a better estimate of the real PSF.
+% Load the data.
+filepath=fullfile(imageDirectory,imageName);
+imageInfo = imfinfo(filepath);
+imData = tiffRead(filepath); disp([imageName ' Loaded']);
+paddedImData=padarray(single(imData),[20 20 20],'symmetric');
+imDataMaxIntensity=max(paddedImData(:));
+disp('Deconvolving Data');
+[~,enhancedPSF]=deconvblind(paddedImData,PSF,numberIterations);
+
+% Save the PSF
+disp('Saving the PSF');
+enhancedPSF=enhancedPSF./max(enhancedPSF(:));
+enhancedPSF=uint16(enhancedPSF.*2^16);
+tiffWrite(enhancedPSF,fullfile(outputDirectory,'enhancedPSF.tif'));
+
+%% Deconvolve the Data With The Improved PSF Estimate
+disp('Deconvolving Data with Enhanced PSF');
+[deconvolvedImData,~]=deconvblind(paddedImData,enhancedPSF,numberIterations);
+deconvolvedImData=deconvolvedImData(21:20+imageInfo(1).Height,21:20+imageInfo(1).Width,21:20+length(imageInfo));
+deconvolvedImData=deconvolvedImData./max(deconvolvedImData(:));
+deconvolvedImData=uint16(deconvolvedImData*imDataMaxIntensity);
+
+% save the deconvolved image
+tiffWrite(deconvolvedImData,fullfile(outputDirectory,imageName));
+disp([imageName ' Deconvolution Complete']);
diff --git a/2021-chang-projection/liveProjection_2_angle_PSD.m b/2021-chang-projection/liveProjection_2_angle_PSD.m
new file mode 100644
index 0000000..828cfab
--- /dev/null
+++ b/2021-chang-projection/liveProjection_2_angle_PSD.m
@@ -0,0 +1,343 @@
+%% Init
+if(isempty(which('MovieData')))
+ addpath(genpath('~/repo/utsw-ssh/'));
+else
+ disp('Code is already loaded');
+end
+
+clc;
+clear; close all
+
+
+%% Detect objectes on two projections angle
+data_source = '/archive/bioinformatics/Danuser_lab/Fiolka/MicroscopeDevelopment/OPM/projection/MV3fixed/GEMS/201002/Cell10/averagedframes/';
+proj=double(imread([data_source filesep '/ch1/0000.tif']));
+cellProj{1}=double(imread([data_source filesep '/ch1/0000.tif']));
+cellProj{2}=double(imread([data_source filesep '/ch1/0019.tif']));
+objectScale=1.8;
+detectSensitivity=0.01;
+
+cellDetect=cell(size(cellProj));
+for pIdx=1:numel(cellProj)
+ pts=pointSourceDetection(cellProj{pIdx},objectScale,'Alpha',detectSensitivity);
+
+ figure();
+ imshow(mat2gray(cellProj{pIdx}));
+ hold on;
+ scatter(pts.x,pts.y);
+ drawnow;
+ hold off
+ cellDetect{pIdx}=[pts.x' pts.y'];
+end
+
+%% Match objects to the first frame
+close all
+matchingSearchRadius=100;
+xGating=3; % horizontal gating used for matching
+cellMatchIdx=cell(1,numel(cellDetect)-1);
+for pIdx=2:numel(cellProj)
+ X1=cellDetect{1};
+ X2=cellDetect{pIdx};
+ D = createSparseDistanceMatrix(X1,X2, matchingSearchRadius);
+ % only keep the vertical distance
+ [i,j,v] = find(D);
+ gatedDistanceIdx=(abs(X1(i,1)-X2(j,1))>xGating);
+ gatedDistance=sparse(i(~gatedDistanceIdx),j(~gatedDistanceIdx),...
+ v(~gatedDistanceIdx),size(D,1),size(D,2));
+
+ [link12, ~] = lap(gatedDistance, [], [], 1);
+
+ n1 = size(X1,1);
+ n2 = size(X2,1);
+ link12 = link12(1:n1);
+ matchIdx = link12<=n2;
+ idx1 = find(matchIdx);
+ idx2 = double(link12(matchIdx));
+
+ cmap=prism(numel(idx1));
+
+ figure();
+ img=sc(cellProj{1},'summer')+sc(cellProj{pIdx},'autumn');
+ sc(img);
+ hold on;
+ scatter(cellDetect{1}(:,1),cellDetect{1}(:,2),50,[0 0 0]);
+ scatter(cellDetect{1}(idx1,1),cellDetect{1}(idx1,2),50,cmap);
+ scatter(cellDetect{pIdx}(:,1),cellDetect{pIdx}(:,2),50,[0.2 0.2 0.2]);
+ scatter(cellDetect{pIdx}(idx2,1),cellDetect{pIdx}(idx2,2),50,cmap);
+ for l=1:numel(idx1)
+ plot([cellDetect{1}(idx1(l),1) cellDetect{pIdx}(idx2(l),1)], ...
+ [cellDetect{1}(idx1(l),2) cellDetect{pIdx}(idx2(l),2)]);
+ end
+ hold off;
+ title('Naive LAP pairing (non-directional)')
+
+ cellMatchIdx=[idx1 idx2];
+end
+
+%% Z estimation
+cell3DPos=cell(1,numel(cellMatchIdx));
+gain=1:0.01:1.8; %normalized shear factor (normalized such that 1 equals properly deskewed view)
+slice=20; % frame you want to use together with first frame
+alpha_2=atand(gain(slice)*2*sind(60)-2*sind(60)); %shear angle
+clear h
+
+for pIdx=2:numel(cellProj)
+ posRef=cellDetect{1}(idx1,:);
+ posMatched=cellDetect{pIdx}(idx2,:);
+ delta_y=posMatched(:,2) - posRef(:,2);
+ Z=delta_y/(tand(alpha_2))+200; % Still do not understand where the 200 comes from
+ cell3DPos{pIdx-1}=[posRef Z];
+end
+
+XYZ=cell3DPos{1};
+
+%% Crop the huge ground truth
+cropFilePath='/tmp/liveProj_crop.tif';
+cropOverwrite=false;
+
+if(~exist(cropFilePath,'file')||cropOverwrite)
+ % fileGT='/archive/bioinformatics/Danuser_lab/Fiolka/MicroscopeDevelopment/OPM/projection/MV3fixed/GEMS/201002/Cell7/1_CH00_000000_deskewed.tif';
+ % stackGTOrig=stackRead(fileGT);
+ stackGT=stackRead('/tmp/test.tif'); %% There is bug with the original tiff format, this is resaved with gmic
+ % reproducing the mirror and rotationg that was in the original microscope code
+ stackGT=flip(stackGT,2);
+ stackGT=imrotate3(stackGT,90,[0 0 1]);
+ figure();
+ imshow(squeeze(max(stackGT,[],3)),[],'Border','tight');
+ drawnow;
+ % cropTruth reusing Kevin nice trick
+ close all
+ vol=stackGT;
+ maxXY = squeeze(max(vol,[],3));
+ figure
+ imshow(maxXY,[],'Border','tight');
+ xyIndices = ceil(getrect);
+
+ vol2 = vol(xyIndices(2):xyIndices(2)+xyIndices(4),xyIndices(1):xyIndices(1)+xyIndices(3),:);
+ maxYZ = squeeze(max(vol2,[],1)); imshow(maxYZ,[],'Border','tight');
+ zIndices = ceil(getrect);
+
+ roiIdx = nan(6,1);
+ roiIdx(1) = max(1,xyIndices(1));
+ roiIdx(2) = min(size(vol,2),xyIndices(1)+xyIndices(3)-1);
+ roiIdx(3) = max(1,xyIndices(2));
+ roiIdx(4) = min(size(vol,1),xyIndices(2)+xyIndices(4)-1);
+ roiIdx(5) = max(1,zIndices(1));
+ roiIdx(6) = min(size(vol,3),zIndices(1)+zIndices(3)-1);
+ cropTruth=vol(roiIdx(3):roiIdx(4),roiIdx(1):roiIdx(2),roiIdx(5):roiIdx(6));
+ figure
+ imshow(maxXY,[],'Border','tight');
+ stackWrite(cropTruth,cropFilePath);
+else
+ cropTruth=stackRead(cropFilePath);
+end
+
+figure
+imshow(squeeze(max(cropTruth,[],3)),[],'Border','tight');
+
+%% Detect object on truth
+pstruct=pointSourceDetection3D(cropTruth,1.8,'Alpha',0.0000001);
+close all;
+figure();
+imshow(squeeze(max(cropTruth,[],3)),[],'Border','tight');
+hold on;
+scatter(pstruct.x,pstruct.y);
+hold off;
+drawnow;
+
+figure();
+imshow(squeeze(max(cropTruth,[],2)),[],'Border','tight');
+hold on;
+scatter(pstruct.z,pstruct.y);
+hold off;
+drawnow;
+
+%% Ground truth and measured are shifted (this is the case even without crop)
+XYZMeasured=[pstruct.x',pstruct.y',pstruct.z'];
+
+close all
+figure();
+subplot(2,2,1);
+hold on;
+scatter(XYZMeasured(:,1),XYZMeasured(:,2));
+scatter(XYZ(:,1),XYZ(:,2));
+drawnow;
+hold off;
+subplot(2,2,2);
+hold on;
+scatter(XYZMeasured(:,1),XYZMeasured(:,3));
+scatter(XYZ(:,1),XYZ(:,3));
+drawnow;
+hold off;
+subplot(2,2,3);
+hold on;
+scatter(XYZMeasured(:,2),XYZMeasured(:,3));
+scatter(XYZ(:,2),XYZ(:,3));
+drawnow;
+legend('truth','estimated');
+hold off;
+
+%% Aligning point cloud by decimation
+
+
+
+%% Aligning the point cloud (buggy)
+T=[1 0 0 0; 0 1 0 0;0 0 1 0; median(XYZMeasured,1)-median(XYZ,1) 1];
+tformAvg=affine3d(T);
+XYZTransAvg=pctransform(pointCloud(XYZ),tformAvg);
+XYZTransAvg=XYZTransAvg.Location;
+close all;
+XYZDecim=pcregdecim(XYZTransAvg,XYZMeasured,20,50,1);
+XYZDecim=pcregdecim(XYZDecim,XYZMeasured,20,50,2);
+XYZDecim=pcregdecim(XYZDecim,XYZMeasured,20,50,3);
+
+XYZTrans=XYZDecim;
+%%
+
+% [tform,XYZTrans] = pcregrigid(pointCloud(XYZ),pointCloud(XYZMeasured), ...
+% 'Verbose',true,'InlierRatio',0.5,'Extrapolate',true, 'InitialTransform',tformAvg);
+
+%%
+% [tform,XYZTrans] = pcregisterndt(pointCloud(XYZ),pointCloud(XYZMeasured),1000);
+% XYZTrans=XYZTrans.Location;
+
+% close all
+% figure();
+% subplot(2,2,1);
+% scatter(XYZMeasured(:,1),XYZMeasured(:,2));
+% hold on;
+% scatter(XYZTransAvg(:,1),XYZTransAvg(:,2));
+% scatter(XYZ(:,1),XYZ(:,2));
+% hold off;
+% subplot(2,2,2);
+% hold on;
+% scatter(XYZMeasured(:,2),XYZMeasured(:,1));
+% scatter(XYZTransAvg(:,2),XYZTransAvg(:,1));
+% scatter(XYZ(:,2),XYZ(:,1));
+% hold off;
+% subplot(2,2,3);
+% hold on;
+% scatter(XYZMeasured(:,1),XYZMeasured(:,3));
+% scatter(XYZTransAvg(:,1),XYZTransAvg(:,3));
+% scatter(XYZ(:,1),XYZ(:,3));
+% hold off;
+% legend('Truth','transAvg','est')
+
+figure();
+subplot(2,2,1);
+scatter(XYZMeasured(:,2),XYZMeasured(:,3));
+hold on;
+scatter(XYZTrans(:,2),XYZTrans(:,3));
+hold off;
+subplot(2,2,2);
+hold on;
+scatter(XYZMeasured(:,2),XYZMeasured(:,1));
+scatter(XYZTrans(:,2),XYZTrans(:,1));
+hold off;
+subplot(2,2,3);
+hold on;
+scatter(XYZMeasured(:,1),XYZMeasured(:,3));
+scatter(XYZTrans(:,1),XYZTrans(:,3));
+hold off;
+legend('truth','estimatedMatched')
+%%
+close all;
+figure();
+% imshow(squeeze(max(cropTruth,[],3)),[],'Border','tight');
+hold on;
+scatter(XYZMeasured(:,1),XYZMeasured(:,2));
+scatter(XYZ(:,1)-230,XYZ(:,2)-370);
+drawnow;
+hold off
+legend('truth','estimatedMatched')
+
+figure();
+% imshow(squeeze(max(cropTruth,[],2)),[],'Border','tight');
+hold on;
+scatter(XYZMeasured(:,3),XYZMeasured(:,2));
+scatter(XYZ(:,3)-82,XYZ(:,2)-370);
+drawnow;
+hold off
+legend('truth','estimatedMatched')
+
+%%
+
+figure();
+imshow(squeeze(max(cropTruth,[],3)),[],'Border','tight');
+hold on;
+scatter(XYZMeasured(:,1),XYZMeasured(:,2));
+scatter(XYZTrans(:,1)+25,XYZTrans(:,2)-12);
+drawnow;
+hold off
+
+figure();
+imshow(squeeze(max(cropTruth,[],2)),[],'Border','tight');
+hold on;
+scatter(XYZMeasured(:,3),XYZMeasured(:,2));
+scatter(XYZTrans(:,3)-19,XYZTrans(:,2)-12);
+drawnow;
+hold off
+
+%%
+figure();
+imshow(squeeze(max(cropTruth,[],2)),[],'Border','tight');
+hold on;
+scatter(XYZMeasured(:,3),XYZMeasured(:,2));
+scatter(XYZTrans(:,3),XYZTrans(:,2));
+drawnow;
+hold off
+
+figure();
+imshow(squeeze(max(cropTruth,[],3)),[],'Border','tight');
+hold on;
+scatter(XYZMeasured(:,1),XYZMeasured(:,2));
+scatter(XYZTrans(:,1),XYZTrans(:,2));
+drawnow;
+hold off
+
+
+%% Jaccard Index
+close all;
+[idx1, idx2] = colocalizationLAP(XYZMeasured, XYZTrans, 5);
+JI=numel(idx1)/(size(XYZMeasured,1)+size(XYZTrans,1)-numel(idx1));
+disp(['Jaccard Indx is : ' num2str(JI)]);
+figure();
+subplot(2,2,1);
+mip=squeeze(max(cropTruth,[],3));
+imshow(mip,prctile(mip(:),[5 99]));
+hold on;
+scatter(XYZMeasured(:,1),XYZMeasured(:,2));
+scatter(XYZTrans(:,1),XYZTrans(:,2));
+scatter(XYZTrans(idx2,1),XYZTrans(idx2,2));
+xlabel('X');
+ylabel('Y');
+hold off;
+
+subplot(2,2,2)
+mip=squeeze(max(cropTruth,[],2));
+imshow(mip,prctile(mip(:),[5 99]));
+hold on;
+scatter(XYZMeasured(:,3),XYZMeasured(:,2));
+scatter(XYZTrans(:,3),XYZTrans(:,2));
+scatter(XYZTrans(idx2,3),XYZTrans(idx2,2));
+xlabel('Z');
+ylabel('Y');
+legend('Ground truth','False positives','True positives');
+hold off;
+subplot(2,2,3)
+mip=squeeze(max(cropTruth,[],1))';
+imshow(mip,prctile(mip(:),[5 99]));
+hold on;
+scatter(XYZMeasured(:,1),XYZMeasured(:,3));
+scatter(XYZTrans(:,1),XYZTrans(:,3));
+scatter(XYZTrans(idx2,1),XYZTrans(idx2,3));
+xlabel('X');
+ylabel('Z');
+hold off;
+
+%% RMSE
+figure
+histogram(sum(((XYZMeasured(idx1,:)-XYZTrans(idx2,:)).^2),2).^.5);
+xlabel('distance')
+RMSE=sqrt(mean( sum(((XYZMeasured(idx1,:)-XYZTrans(idx2,:)).^2),2) ));
+disp(['RMSE is : ' num2str(RMSE)]);
diff --git a/2021-dean-protocol/laser-alignment-tool/README.md b/2021-dean-protocol/laser-alignment-tool/README.md
new file mode 100644
index 0000000..63cb2fa
--- /dev/null
+++ b/2021-dean-protocol/laser-alignment-tool/README.md
@@ -0,0 +1,26 @@
+# LaserAlignmentTool
+## Overview
+Originally developed by the Gustafsson Lab, this alignment tool is designed for the coaxial alignment of optical elements with a laser diode.
+
+Additional information is available in Sarah Abrahamsson's manuscript - MultiFocus Polarization Microscope (MF- PolScope) for 3D polarization imaging of up to 25 focal planes simultaneously. https://www.osapublishing.org/DirectPDFAccess/80AF3C88-EC2F-A4F9-3AD496CAE0FFFA2A_313825/oe-23-6-7734.pdf - Appendix E nicely describes how to alignn the laser alignment tool, which involves retroreflecting the laser off of a series of co-planar optical surfaces.
+
+This alignment device consists of a hollow brass cylinder (we have also manufactured one using aluminum without any problems) with multiple set screws for holding and aligning a cylindrical laser diode, which fits within the hollow interior.
+
+## Potential Useful Modifications
+The original design called for 0-80 set screws, and an RMS external thread. However, We find that the 0-80 set screws are bit small, and larger set screws are convenient. Furthermore, we recommend that you change the external threads to accomodate your optomechanics. Student and academic versions of Autodesk Inventor are available for free (https://www.autodesk.com/education/free-software/inventor-professional), and there are numerous tutorials online on how to use the software (e.g., https://www.youtube.com/watch?v=SsLkAokkeR8).
+
+### Common thread types:
+* 1.035"-40 - SM1 thread, ThorLabs
+* M25 or M32 Nikon Instruments
+* RMS - Olympus
+* M26-32 Mitotoyo
+* M27 - Zeiss
+
+## Laser Diode Modules
+We have used laser diodes from Newport (https://www.newport.com/f/laser-diode-modules-cw), and we recommend that you choose a wavelength that is appropriate for your application. For example, if you are planning on mainly imaging GFP, then select a wavelength of ~500 nm, which is intermediate to both the excitation (488 nm) and emission (509 nm) maxima. We also caution you to use a reasonable laser power. You will also need a power supply (LPMS-8-110, LPMS-5 220, or LPMS-5-110).
+
+## Machine Shops
+For individuals without a machine shop, we recommend that you contact a third-party rapid prototyping CNC company. Potential examples include:
+* Protolabs - https://www.protolabs.com
+* Prismier - https://prismier.com/service/prototype-metal-cnc-machining-turning
+* Xometry - https://www.xometry.com/rapid-prototyping-service
diff --git a/2021-dean-protocol/laser-alignment-tool/laserfocus_draft3.igs b/2021-dean-protocol/laser-alignment-tool/laserfocus_draft3.igs
new file mode 100644
index 0000000..eccd860
--- /dev/null
+++ b/2021-dean-protocol/laser-alignment-tool/laserfocus_draft3.igs
@@ -0,0 +1,1608 @@
+ S 1
+,,,17Hlaserfocus_draft3,22HAutodesk Inventor 2019,7Hunknown,32,38,7,99, G 1
+15,,1.,1,4HINCH,1,0.08,15H20190701.111853,0.000393700787401575,10000.,6HG 2
+Saumya,,11,0,15H20190307.141705; G 3
+ 406 1 2 00000000D 1
+ 406 1 3 0D 2
+ 124 2 00000000D 3
+ 124 2 0 0D 4
+ 124 4 00000000D 5
+ 124 2 0 0D 6
+ 100 6 2 3 00000000D 7
+ 100 0 1 0 0D 8
+ 100 7 2 5 00000000D 9
+ 100 0 1 0 0D 10
+ 186 8 00000000D 11
+ 186 -259 1 0 0D 12
+ 514 9 00010000D 13
+ 514 2 1 0D 14
+ 510 11 00010000D 15
+ 510 -259 1 1 0D 16
+ 510 12 00010000D 17
+ 510 -259 1 1 0D 18
+ 510 13 00010000D 19
+ 510 -259 1 1 0D 20
+ 510 14 00010000D 21
+ 510 -259 1 1 0D 22
+ 510 15 00010000D 23
+ 510 -259 1 1 0D 24
+ 510 16 00010000D 25
+ 510 -259 1 1 0D 26
+ 510 17 00010000D 27
+ 510 -259 1 1 0D 28
+ 510 18 00010000D 29
+ 510 -259 1 1 0D 30
+ 510 19 00010000D 31
+ 510 -259 1 1 0D 32
+ 510 20 00010000D 33
+ 510 -259 1 1 0D 34
+ 510 21 00010000D 35
+ 510 -259 1 1 0D 36
+ 510 22 00010000D 37
+ 510 -259 1 1 0D 38
+ 510 23 00010000D 39
+ 510 -259 1 1 0D 40
+ 510 24 00010000D 41
+ 510 -259 1 1 0D 42
+ 510 25 00010000D 43
+ 510 -259 1 1 0D 44
+ 510 26 00010000D 45
+ 510 -259 1 1 0D 46
+ 510 27 00010000D 47
+ 510 -259 1 1 0D 48
+ 508 28 00010000D 49
+ 508 2 1 0D 50
+ 508 30 00010000D 51
+ 508 2 1 0D 52
+ 508 32 00010000D 53
+ 508 2 1 0D 54
+ 508 34 00010000D 55
+ 508 2 1 0D 56
+ 508 36 00010000D 57
+ 508 2 1 0D 58
+ 508 38 00010000D 59
+ 508 2 1 0D 60
+ 508 40 00010000D 61
+ 508 1 1 0D 62
+ 508 41 00010000D 63
+ 508 1 1 0D 64
+ 508 42 00010000D 65
+ 508 1 1 0D 66
+ 508 43 00010000D 67
+ 508 1 1 0D 68
+ 508 44 00010000D 69
+ 508 1 1 0D 70
+ 508 45 00010000D 71
+ 508 1 1 0D 72
+ 508 46 00010000D 73
+ 508 1 1 0D 74
+ 508 47 00010000D 75
+ 508 1 1 0D 76
+ 508 48 00010000D 77
+ 508 1 1 0D 78
+ 508 49 00010000D 79
+ 508 1 1 0D 80
+ 508 50 00010000D 81
+ 508 1 1 0D 82
+ 508 51 00010000D 83
+ 508 2 1 0D 84
+ 508 53 00010000D 85
+ 508 2 1 0D 86
+ 508 55 00010000D 87
+ 508 1 1 0D 88
+ 508 56 00010000D 89
+ 508 1 1 0D 90
+ 508 57 00010000D 91
+ 508 1 1 0D 92
+ 508 58 00010000D 93
+ 508 1 1 0D 94
+ 508 59 00010000D 95
+ 508 1 1 0D 96
+ 508 60 00010000D 97
+ 508 1 1 0D 98
+ 508 61 00010000D 99
+ 508 1 1 0D 100
+ 508 62 00010000D 101
+ 508 1 1 0D 102
+ 508 63 00010000D 103
+ 508 1 1 0D 104
+ 508 64 00010000D 105
+ 508 1 1 0D 106
+ 508 65 00010000D 107
+ 508 1 1 0D 108
+ 508 66 00010000D 109
+ 508 1 1 0D 110
+ 508 67 00010000D 111
+ 508 1 1 0D 112
+ 126 68 00010000D 113
+ 126 0 40 0 0D 114
+ 126 108 00010000D 115
+ 126 0 16 0 0D 116
+ 126 124 00010000D 117
+ 126 0 5 0 0D 118
+ 126 129 00010000D 119
+ 126 0 37 0 0D 120
+ 126 166 00010000D 121
+ 126 0 19 0 0D 122
+ 126 185 00010000D 123
+ 126 0 40 0 0D 124
+ 126 225 00010000D 125
+ 126 0 16 0 0D 126
+ 126 241 00010000D 127
+ 126 0 5 0 0D 128
+ 126 246 00010000D 129
+ 126 0 38 0 0D 130
+ 126 284 00010000D 131
+ 126 0 19 0 0D 132
+ 126 303 00010000D 133
+ 126 0 18 0 0D 134
+ 126 321 00010000D 135
+ 126 0 39 0 0D 136
+ 126 360 00010000D 137
+ 126 0 5 0 0D 138
+ 126 365 00010000D 139
+ 126 0 15 0 0D 140
+ 126 380 00010000D 141
+ 126 0 41 0 0D 142
+ 126 421 00010000D 143
+ 126 0 18 0 0D 144
+ 126 439 00010000D 145
+ 126 0 39 0 0D 146
+ 126 478 00010000D 147
+ 126 0 5 0 0D 148
+ 126 483 00010000D 149
+ 126 0 15 0 0D 150
+ 126 498 00010000D 151
+ 126 0 41 0 0D 152
+ 126 539 00010000D 153
+ 126 0 32 0 0D 154
+ 126 571 00010000D 155
+ 126 0 16 0 0D 156
+ 126 587 00010000D 157
+ 126 0 4 0 0D 158
+ 126 591 00010000D 159
+ 126 0 25 0 0D 160
+ 126 616 00010000D 161
+ 126 0 26 0 0D 162
+ 126 642 00010000D 163
+ 126 0 16 0 0D 164
+ 126 658 00010000D 165
+ 126 0 32 0 0D 166
+ 126 690 00010000D 167
+ 126 0 16 0 0D 168
+ 126 706 00010000D 169
+ 126 0 4 0 0D 170
+ 126 710 00010000D 171
+ 126 0 25 0 0D 172
+ 126 735 00010000D 173
+ 126 0 27 0 0D 174
+ 126 762 00010000D 175
+ 126 0 16 0 0D 176
+ 126 778 00010000D 177
+ 126 0 12 0 0D 178
+ 126 790 00010000D 179
+ 126 0 3 0 0D 180
+ 126 793 00010000D 181
+ 126 0 15 0 0D 182
+ 126 808 00010000D 183
+ 126 0 12 0 0D 184
+ 126 820 00010000D 185
+ 126 0 5 0 0D 186
+ 126 825 00010000D 187
+ 126 0 12 0 0D 188
+ 126 837 00010000D 189
+ 126 0 12 0 0D 190
+ 126 849 00010000D 191
+ 126 0 4 0 0D 192
+ 126 853 00010000D 193
+ 126 0 7 0 0D 194
+ 126 860 00010000D 195
+ 126 0 8 0 0D 196
+ 126 868 00010000D 197
+ 126 0 7 0 0D 198
+ 126 875 00010000D 199
+ 126 0 4 0 0D 200
+ 126 879 00010000D 201
+ 126 0 8 0 0D 202
+ 126 887 00010000D 203
+ 126 0 3 0 0D 204
+ 126 890 00010000D 205
+ 126 0 12 0 0D 206
+ 126 902 00010000D 207
+ 126 0 4 0 0D 208
+ 126 906 00010000D 209
+ 126 0 12 0 0D 210
+ 126 918 00010000D 211
+ 126 0 12 0 0D 212
+ 126 930 00010000D 213
+ 126 0 4 0 0D 214
+ 126 934 00010000D 215
+ 126 0 12 0 0D 216
+ 126 946 00010000D 217
+ 126 0 3 0 0D 218
+ 128 949 00010000D 219
+ 128 0 -259 27 0 0D 220
+ 128 976 00010000D 221
+ 128 0 -259 27 0 0D 222
+ 128 1003 00010000D 223
+ 128 0 -259 27 0 0D 224
+ 128 1030 00010000D 225
+ 128 0 -259 27 0 0D 226
+ 128 1057 00010000D 227
+ 128 0 -259 22 0 0D 228
+ 128 1079 00010000D 229
+ 128 0 -259 24 0 0D 230
+ 128 1103 00010000D 231
+ 128 0 -259 23 0 0D 232
+ 128 1126 00010000D 233
+ 128 0 -259 27 0 0D 234
+ 128 1153 00010000D 235
+ 128 0 -259 20 0 0D 236
+ 128 1173 00010000D 237
+ 128 0 -259 5 0 0D 238
+ 128 1178 00010000D 239
+ 128 0 -259 24 0 0D 240
+ 128 1202 00010000D 241
+ 128 0 -259 20 0 0D 242
+ 128 1222 00010000D 243
+ 128 0 -259 21 0 0D 244
+ 128 1243 00010000D 245
+ 128 0 -259 5 0 0D 246
+ 128 1248 00010000D 247
+ 128 0 -259 21 0 0D 248
+ 128 1269 00010000D 249
+ 128 0 -259 20 0 0D 250
+ 128 1289 00010000D 251
+ 128 0 -259 5 0 0D 252
+ 502 1294 00010000D 253
+ 502 33 1 0D 254
+ 504 1327 00010001D 255
+ 504 15 1 0D 256
+ 406 1342 00000000D 257
+ 406 1 15 0D 258
+ 314 1343 00000200D 259
+ 314 1 0 0D 260
+406,2,0,8HSketch12; 1P 1
+124,-1.,0.,0.,3.31157285126126,0.,0.,1.,1.69665853469879,0.,1., 3P 2
+0.,1.45; 3P 3
+124,-1.,0.,0.,3.31157285126126,0.,0.,1.,1.69665853469879,0.,1., 5P 4
+0.,0.15; 5P 5
+100,0.,0.,0.,-0.056,0.,-0.056,0.; 7P 6
+100,0.,0.,0.,-0.056,0.,-0.056,0.; 9P 7
+186,13,1,0,0,1,257; 11P 8
+514,17,15,1,17,1,19,1,21,1,23,1,25,1,27,1,29,1,31,1,33,1,35,1, 13P 9
+37,1,39,1,41,1,43,1,45,1,47,1; 13P 10
+510,219,1,1,49; 15P 11
+510,221,1,1,51; 17P 12
+510,223,1,1,53; 19P 13
+510,225,1,1,55; 21P 14
+510,227,1,1,57; 23P 15
+510,229,1,1,59; 25P 16
+510,231,1,1,61; 27P 17
+510,233,1,1,63; 29P 18
+510,235,7,1,65,67,69,71,73,75,77; 31P 19
+510,237,2,1,79,81; 33P 20
+510,239,1,1,83; 35P 21
+510,241,7,1,85,87,89,91,93,95,97; 37P 22
+510,243,1,1,99; 39P 23
+510,245,2,1,101,103; 41P 24
+510,247,1,1,105; 43P 25
+510,249,1,1,107; 45P 26
+510,251,2,1,109,111; 47P 27
+508,6,0,255,1,0,0,0,255,2,0,0,0,255,3,1,0,0,255,4,0,0,0,255,5,0, 49P 28
+0,0,255,3,0,0; 49P 29
+508,6,0,255,6,0,0,0,255,7,0,0,0,255,8,1,0,0,255,9,0,0,0,255,10, 51P 30
+0,0,0,255,8,0,0; 51P 31
+508,6,0,255,11,0,0,0,255,12,0,0,0,255,13,1,0,0,255,14,0,0,0,255, 53P 32
+15,0,0,0,255,13,0,0; 53P 33
+508,6,0,255,16,0,0,0,255,17,0,0,0,255,18,1,0,0,255,19,0,0,0,255, 55P 34
+20,0,0,0,255,18,0,0; 55P 35
+508,7,0,255,21,0,0,0,255,22,0,0,0,255,23,1,0,0,255,24,0,0,0,255, 57P 36
+25,0,0,0,255,23,0,0,0,255,26,0,0; 57P 37
+508,7,0,255,27,0,0,0,255,28,0,0,0,255,29,1,0,0,255,30,0,0,0,255, 59P 38
+31,0,0,0,255,29,0,0,0,255,32,0,0; 59P 39
+508,4,0,255,33,0,0,0,255,34,1,0,0,255,35,0,0,0,255,34,0,0; 61P 40
+508,4,0,255,36,1,0,0,255,37,1,0,0,255,38,1,0,0,255,37,0,0; 63P 41
+508,4,0,255,39,0,0,0,255,40,1,0,0,255,38,0,0,0,255,40,0,0; 65P 42
+508,2,0,255,1,1,0,0,255,2,1,0; 67P 43
+508,2,0,255,6,1,0,0,255,7,1,0; 69P 44
+508,2,0,255,11,1,0,0,255,12,1,0; 71P 45
+508,2,0,255,16,1,0,0,255,17,1,0; 73P 46
+508,3,0,255,21,1,0,0,255,26,1,0,0,255,22,1,0; 75P 47
+508,3,0,255,27,1,0,0,255,32,1,0,0,255,28,1,0; 77P 48
+508,1,0,255,36,0,0; 79P 49
+508,2,0,255,41,1,0,0,255,42,1,0; 81P 50
+508,5,0,255,43,1,0,0,255,44,1,0,0,255,35,1,0,0,255,44,0,0,0,255, 83P 51
+45,1,0; 83P 52
+508,6,0,255,41,0,0,0,255,42,0,0,0,255,46,1,0,0,255,43,0,0,0,255, 85P 53
+45,0,0,0,255,46,0,0; 85P 54
+508,2,0,255,4,1,0,0,255,5,1,0; 87P 55
+508,2,0,255,9,1,0,0,255,10,1,0; 89P 56
+508,2,0,255,14,1,0,0,255,15,1,0; 91P 57
+508,2,0,255,19,1,0,0,255,20,1,0; 93P 58
+508,2,0,255,24,1,0,0,255,25,1,0; 95P 59
+508,2,0,255,30,1,0,0,255,31,1,0; 97P 60
+508,4,0,255,47,1,0,0,255,48,1,0,0,255,39,1,0,0,255,48,0,0; 99P 61
+508,1,0,255,47,0,0; 101P 62
+508,1,0,255,49,1,0; 103P 63
+508,4,0,255,50,1,0,0,255,51,1,0,0,255,52,1,0,0,255,51,0,0; 105P 64
+508,4,0,255,52,0,0,0,255,53,1,0,0,255,49,0,0,0,255,53,0,0; 107P 65
+508,1,0,255,50,0,0; 109P 66
+508,1,0,255,33,1,0; 111P 67
+126,27,3,0,0,1,0,0.,0.,0.,0.,0.0536273852314883, 113P 68
+0.0536273852314883,0.107254770462977,0.107254770462977, 113P 69
+0.160871199878581,0.160871199878581,0.214487629294185, 113P 70
+0.214487629294185,0.268100271894924,0.268100271894924, 113P 71
+0.321712914495662,0.321712914495662,0.375339740821894, 113P 72
+0.375339740821894,0.428966567148127,0.428966567148127, 113P 73
+0.482571952160097,0.482571952160097,0.536177337172067, 113P 74
+0.536177337172067,0.589784393508081,0.589784393508081, 113P 75
+0.643391449844096,0.643391449844096,0.643917130031255, 113P 76
+0.643917130031255,0.643917130031255,0.643917130031255,1.,1.,1., 113P 77
+1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1., 113P 78
+1.,1.,1.,1.,3.85714908296617,2.54635149695176,1.45381719014639, 113P 79
+3.85714908296617,2.54635149695176,1.4608549047437, 113P 80
+3.85656521723739,2.54763971971988,1.4683587497605, 113P 81
+3.85413968317197,2.55284102256025,1.48215858725471, 113P 82
+3.85229190615329,2.55675027909554,1.48845494622483, 113P 83
+3.84789960553893,2.5656909014055,1.49839729014427, 113P 84
+3.84506070305551,2.57131896543069,1.50270813028563, 113P 85
+3.83860116617598,2.58351877157309,1.50842734077533, 113P 86
+3.83497427013993,2.59008734021619,1.5098354062095, 113P 87
+3.82794936789801,2.60228051568912,1.50983548954652, 113P 88
+3.82408625796584,2.6087124420339,1.50842769074694, 113P 89
+3.81677261651193,2.62041898677119,1.5027089342687, 113P 90
+3.81332797400472,2.62569742766785,1.49839827219974, 113P 91
+3.80779691049681,2.63398106943863,1.4884559486545, 113P 92
+3.80534206064745,2.63754003877287,1.48215941180674, 113P 93
+3.8020594299478,2.64224665387495,1.46835936483335, 113P 94
+3.80123800530685,2.64339768292625,1.46085549758713, 113P 95
+3.80123800530685,2.64339768292625,1.44678302890757, 113P 96
+3.80205885607222,2.64224746293885,1.4392819628702, 113P 97
+3.80534075173454,2.63754192923127,1.42548834910031, 113P 98
+3.80779547137615,2.63398318250013,1.41919546848165, 113P 99
+3.81332709294009,2.62569878942786,1.40925910324609, 113P 100
+3.81677242141554,2.62041930407325,1.40495205263784, 113P 101
+3.82408669814515,2.60871173244088,1.3992390223064, 113P 102
+3.82794973387119,2.60227988046674,1.39783319199315, 113P 103
+3.83149613388204,2.59612436738764,1.3978331499219, 113P 104
+3.8315305848876,2.59606454668521,1.39783327691851, 113P 105
+3.831565047446,2.59600468200483,1.39783353181301,0., 113P 106
+0.643917130031255,0.,0.,0.; 113P 107
+126,9,3,0,0,1,0,0.643917130031255,0.643917130031255, 115P 108
+0.643917130031255,0.643917130031255,0.697000710523883, 115P 109
+0.697000710523883,0.75060997120367,0.75060997120367, 115P 110
+0.804216755458324,0.804216755458324,0.857823539712979, 115P 111
+0.857823539712979,0.857823539712979,0.857823539712979,1.,1.,1., 115P 112
+1.,1.,1.,1.,1.,1.,1.,3.831565047446,2.59600468200483, 115P 113
+1.39783353181301,3.83504510250195,2.58995950157518, 115P 114
+1.39785927125099,3.83863226246056,2.58346002385378, 115P 115
+1.39926695710955,3.8450605985991,2.57131918059853, 115P 116
+1.40495185390381,3.84790004161821,2.56569005427878, 115P 117
+1.40925876388975,3.85229281824087,2.55674838198399, 115P 118
+1.41919479316458,3.85414054676362,2.55283918749669, 115P 119
+1.42548750285585,3.85656561061455,2.54763885933723, 115P 120
+1.43928102485921,3.85714908296617,2.54635149695176, 115P 121
+1.44678217908935,3.85714908296617,2.54635149695176, 115P 122
+1.45381719014639,0.643917130031255,0.857823539712979,0.,0.,0.; 115P 123
+126,1,1,0,0,1,0,0.410377640346419,0.410377640346419, 117P 124
+5.76763903003345,5.76763903003345,1.,1.,3.831565047446, 117P 125
+2.59600468200483,1.39783353181301,3.57175878402289, 117P 126
+2.44600136309359,1.39591193370713,0.410377640346419, 117P 127
+5.76763903003345,0.,0.,0.; 117P 128
+126,25,3,0,0,1,0,0.,0.,0.,0.,0.0537420313365901, 119P 129
+0.0537420313365901,0.10748406267318,0.10748406267318, 119P 130
+0.161193534112809,0.161193534112809,0.214903005552438, 119P 131
+0.214903005552438,0.268627407867052,0.268627407867052, 119P 132
+0.322351810181666,0.322351810181666,0.376095911917818, 119P 133
+0.376095911917818,0.429840013653971,0.429840013653971, 119P 134
+0.483544072374564,0.483544072374564,0.537248131095156, 119P 135
+0.537248131095156,0.590956672643984,0.590956672643984, 119P 136
+0.644139526608831,0.644139526608831,0.644139526608831, 119P 137
+0.644139526608831,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1., 119P 138
+1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,3.53917978480351, 119P 139
+2.49209416042628,1.45187960214126,3.53917978480351, 119P 140
+2.49209416042628,1.45893236215918,3.54012598979461, 119P 141
+2.49100846296124,1.46644358672554,3.54384509051644, 119P 142
+2.48654807758169,1.48024379282251,3.54660437516766, 119P 143
+2.48316658325639,1.4865342383405,3.55269545558733, 119P 144
+2.47522204923038,1.49646541590112,3.55643496000936, 119P 145
+2.47012415825445,1.50077552658412,3.56416411756327, 119P 146
+2.45866293909087,1.50650030073163,3.56814260590725, 119P 147
+2.45229157158622,1.50791393471356,3.57516962733923, 119P 148
+2.44006860560427,1.50791376772118,3.57867458947106, 119P 149
+2.43342280275598,1.5064992528059,3.58469158358531, 119P 150
+2.42097249862616,1.50077298842335,3.58721617997584, 119P 151
+2.41517358303897,1.49646230490867,3.59101765321943, 119P 152
+2.40590908338678,1.48653124528102,3.59255195329953, 119P 153
+2.40182119508132,1.48024159970754,3.59453594871176, 119P 154
+2.39635972089679,1.46644237149991,3.59499836854274, 119P 155
+2.39499457160148,1.45893128356428,3.59499836854274, 119P 156
+2.39499457160148,1.44483047510539,3.59453655402364, 119P 157
+2.39635797571758,1.43732460541792,3.59255324751158, 119P 158
+2.40181771124038,1.42353783316762,3.59101897874622, 119P 159
+2.40590569875661,1.41725546859266,3.58721666041436, 119P 160
+2.41517256628969,1.40733736624589,3.58469112066841, 119P 161
+2.42097356181897,1.40303478248845,3.57870277218942, 119P 162
+2.43336438302762,1.39734940485929,3.57523756946348, 119P 163
+2.439940603133,1.39593766375468,3.57175878402289, 119P 164
+2.44600136309359,1.39591193370713,0.,0.644139526608831,0.,0.,0.; 119P 165
+126,11,3,0,0,1,0,0.644139526608831,0.644139526608831, 121P 166
+0.644139526608831,0.644139526608831,0.644665214192811, 121P 167
+0.644665214192811,0.698364459328045,0.698364459328045, 121P 168
+0.752063704463278,0.752063704463278,0.805761567108939, 121P 169
+0.805761567108939,0.859459429754599,0.859459429754599, 121P 170
+0.859459429754599,0.859459429754599,1.,1.,1.,1.,1.,1.,1.,1.,1., 121P 171
+1.,1.,1.,3.57175878402289,2.44600136309359,1.39591193370713, 121P 172
+3.57172439785936,2.44606127086505,1.39591167937767, 121P 173
+3.57169001243284,2.44612112942858,1.39591155286283, 121P 174
+3.56814327478809,2.45229040811918,1.39591163714864, 121P 175
+3.56416490532084,2.45866176662755,1.3973213768375, 121P 176
+3.55643428974559,2.47012515649145,1.40303486391661, 121P 177
+3.55269324205056,2.47522510696598,1.40733786631685, 121P 178
+3.54660093684704,2.48317089697276,1.41725714737067, 121P 179
+3.54384199143394,2.48655184682053,1.42354013592815, 121P 180
+3.54012463851088,2.49101003106462,1.43732717117398, 121P 181
+3.53917978480351,2.49209416042628,1.44483263853947, 121P 182
+3.53917978480351,2.49209416042628,1.45187960214126, 121P 183
+0.644139526608831,0.859459429754599,0.,0.,0.; 121P 184
+126,27,3,0,0,1,0,0.,0.,0.,0.,0.0536316426667544, 123P 185
+0.0536316426667544,0.107263285333509,0.107263285333509, 123P 186
+0.160896434922574,0.160896434922574,0.21452958451164, 123P 187
+0.21452958451164,0.268137847963155,0.268137847963155, 123P 188
+0.32174611141467,0.32174611141467,0.375360628505026, 123P 189
+0.375360628505026,0.428975145595383,0.428975145595383, 123P 190
+0.482576311373687,0.482576311373687,0.536177477151991, 123P 191
+0.536177477151991,0.589775277752289,0.589775277752289, 123P 192
+0.643373078352587,0.643373078352587,0.643898780224878, 123P 193
+0.643898780224878,0.643898780224878,0.643898780224878,1.,1.,1., 123P 194
+1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1., 123P 195
+1.,1.,1.,1.,3.85914179584646,2.54195070931072,0.15379637112426, 123P 196
+3.85914179584646,2.54195070931072,0.160834644440107, 123P 197
+3.8585677550759,2.54324486960331,0.168338611213388, 123P 198
+3.85618253508124,2.5484690539728,0.182137814680832, 123P 199
+3.85436524297636,2.55239520678501,0.188433459406146, 123P 200
+3.85004320204612,2.56137443651483,0.198375699007599, 123P 201
+3.84724843418568,2.56702743580958,0.202687109840433, 123P 202
+3.84088481720274,2.57928287112405,0.208407989550536, 123P 203
+3.83730967819124,2.58588220054325,0.209817114768156, 123P 204
+3.83038190337309,2.59813268211204,0.209817920419141, 123P 205
+3.8265706915065,2.60459496490107,0.208410762345464, 123P 206
+3.81935208031927,2.61635819850918,0.202691974769628, 123P 207
+3.81595061734054,2.62166291455675,0.198380599078015, 123P 208
+3.8104886262159,2.62998695101611,0.188436927069055, 123P 209
+3.80806429856143,2.63356276446412,0.182140371147957, 123P 210
+3.80482249553144,2.6382913869394,0.168341484595636, 123P 211
+3.80401133394344,2.63944759632951,0.160838836827118, 123P 212
+3.80401133394344,2.63944759632951,0.146768537238055, 123P 213
+3.80482216678581,2.63829186166748,0.139267634012918, 123P 214
+3.80806398560611,2.63356322574553,0.125473347345942, 123P 215
+3.81048868326422,2.62998687572445,0.119179669233072, 123P 216
+3.81595155247224,2.62166147777189,0.10924204323781, 123P 217
+3.8193533587626,2.61635616642421,0.104934586157788, 123P 218
+3.82657185041127,2.60459302513891,0.0992213202299627, 123P 219
+3.83038257927128,2.59813148691177,0.0978156227915164, 123P 220
+3.83387894720293,2.59194881036285,0.0978152161887701, 123P 221
+3.83391291917132,2.59188871308093,0.0978153396427345, 123P 222
+3.83394690232816,2.59182857174854,0.097815590991447,0., 123P 223
+0.643898780224878,0.,0.,0.; 123P 224
+126,9,3,0,0,1,0,0.643898780224878,0.643898780224878, 125P 225
+0.643898780224878,0.643898780224878,0.697003925909609, 125P 226
+0.697003925909609,0.75063477346663,0.75063477346663, 125P 227
+0.804237730133452,0.804237730133452,0.857840686800274, 125P 228
+0.857840686800274,0.857840686800274,0.857840686800274,1.,1.,1., 125P 229
+1.,1.,1.,1.,1.,1.,1.,3.83394690232816,2.59182857174854, 125P 230
+0.097815590991447,3.83737979954613,2.58575323820666, 125P 231
+0.0978409816371721,3.84091612013027,2.57922261991745, 125P 232
+0.0992492130914218,3.84724958679999,2.56702518184493, 125P 233
+0.104935572680669,3.85004510423203,2.56137059465513, 125P 234
+0.109243357148785,3.85436726258622,2.55239090087216, 125P 235
+0.119179367662418,3.85618411226059,2.54846562912111, 125P 236
+0.12547058548544,3.85856830912364,2.54324362654746, 125P 237
+0.139261642008026,3.85914179584646,2.54195070931072, 125P 238
+0.146761862375333,3.85914179584646,2.54195070931072, 125P 239
+0.15379637112426,0.643898780224878,0.857840686800274,0.,0.,0.; 125P 240
+126,1,1,0,0,1,0,0.559524435213728,0.559524435213728, 127P 241
+5.91723884439811,5.91723884439811,1.,1.,3.83394690232816, 127P 242
+2.59182857174854,0.097815590991447,3.57411866922795, 127P 243
+2.44181256829138,0.0958938303918303,0.559524435213728, 127P 244
+5.91723884439811,0.,0.,0.; 127P 245
+126,25,3,0,0,1,0,0.,0.,0.,0.,0.0537327750348297, 129P 246
+0.0537327750348297,0.107465550069659,0.107465550069659, 129P 247
+0.161119478225755,0.161119478225755,0.21477340638185, 129P 248
+0.21477340638185,0.268571733844888,0.268571733844888, 129P 249
+0.322370061307926,0.322370061307926,0.376122865173412, 129P 250
+0.376122865173412,0.429875669038899,0.429875669038899, 129P 251
+0.483574385926714,0.483574385926714,0.53727310281453, 129P 252
+0.53727310281453,0.59106305374187,0.59106305374187, 129P 253
+0.644327230288304,0.644327230288304,0.644327230288304, 129P 254
+0.644327230288304,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1., 129P 255
+1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,3.54233152907069, 129P 256
+2.48836255817155,0.151867355631928,3.54233152907069, 129P 257
+2.48836255817155,0.158918900912089,3.54325677463078, 129P 258
+2.48726533720719,0.16643057641922,3.54689465940225, 129P 259
+2.48275539123333,0.180234554381625,3.54959392100456, 129P 260
+2.4793358385783,0.186528147557375,3.55554804574197, 129P 261
+2.47130405590604,0.196460130070642,3.55919990965638, 129P 262
+2.46615339904367,0.200768072033793,3.56673520444298, 129P 263
+2.45458206874687,0.206486727572664,3.57060727354011, 129P 264
+2.44815357271051,0.207896575325244,3.57743868311233, 129P 265
+2.43581745515564,0.207894960855373,3.58084075037806, 129P 266
+2.42910756408446,0.206476594777908,3.58666491905166, 129P 267
+2.41654306714901,0.200743529076881,3.58909966822346, 129P 268
+2.41069377169775,0.196430048252483,3.59275590333913, 129P 269
+2.40135437060727,0.186499206948409,3.59422650699939, 129P 270
+2.39723385078404,0.180213349565959,3.59612596288834, 129P 271
+2.39172698430799,0.166418828694935,3.59656765515724, 129P 272
+2.39034931200528,0.158908474777534,3.59656765515724, 129P 273
+2.39034931200528,0.144807225334844,3.59612676170901, 129P 274
+2.3917245304475,0.137303912871831,3.59422872928203, 129P 275
+2.39722754569861,0.123525087407623,3.5927587074943, 129P 276
+2.40134677224475,0.117247930596666,3.58910223057315, 129P 277
+2.41068766190118,0.107330234184598,3.58666630124302, 129P 278
+2.41654000867363,0.103024593852197,3.58086901497855, 129P 279
+2.4290466646801,0.09733329604776,3.57750504123706, 129P 280
+2.43568750385422,0.0959188769243995,3.57411866922795, 129P 281
+2.44181256829138,0.0958938303918302,0.,0.644327230288304,0.,0., 129P 282
+0.; 129P 283
+126,11,3,0,0,1,0,0.644327230288304,0.644327230288304, 131P 284
+0.644327230288304,0.644327230288304,0.644853004669209, 131P 285
+0.644853004669209,0.698505644328884,0.698505644328884, 131P 286
+0.752158283988558,0.752158283988558,0.805844476018725, 131P 287
+0.805844476018725,0.859530668048892,0.859530668048892, 131P 288
+0.859530668048892,0.859530668048892,1.,1.,1.,1.,1.,1.,1.,1.,1., 131P 289
+1.,1.,1.,3.57411866922795,2.44181256829138,0.0958938303918303, 131P 290
+3.57408524211499,2.44187302922725,0.0958935831557702, 131P 291
+3.57405181489849,2.44193344102753,0.0958934637263267, 131P 292
+3.57060735545785,2.44815342478395,0.0958942777568617, 131P 293
+3.56673490756645,2.45458262823042,0.0973022246071734, 131P 294
+3.5591975258203,2.46615695607239,0.10301367355354, 131P 295
+3.55554399032783,2.47130978891277,0.107316588463685, 131P 296
+3.5495893002736,2.47934180855009,0.117239123735973, 131P 297
+3.54689090054097,2.48276011450028,0.123525550590169, 131P 298
+3.54325535463351,2.48726703416617,0.137316325945552, 131P 299
+3.54233152907069,2.48836255817155,0.144821923606972, 131P 300
+3.54233152907069,2.48836255817155,0.151867355631928, 131P 301
+0.644327230288304,0.859530668048892,0.,0.,0.; 131P 302
+126,11,3,0,0,1,0,0.,0.,0.,0.,0.0536068983360385, 133P 303
+0.0536068983360385,0.107213796672077,0.107213796672077, 133P 304
+0.160822963808843,0.160822963808843,0.21443213094561, 133P 305
+0.21443213094561,0.214931805995059,0.214931805995059, 133P 306
+0.214931805995059,0.214931805995059,1.,1.,1.,1.,1.,1.,1.,1.,1., 133P 307
+1.,1.,1.,2.82245433305252,2.64416835491297,1.44635468642023, 133P 308
+2.82245433305252,2.64416835491297,1.45338971244858, 133P 309
+2.82163149641403,2.64301918416998,1.4608908939751, 133P 310
+2.81834171003938,2.63831811964897,1.47468453917399, 133P 311
+2.81588109415499,2.63476279732928,1.48097734403436, 133P 312
+2.81033601277752,2.62648643576082,1.49091357345944, 133P 313
+2.80688218122812,2.6212120336169,1.49522060663043, 133P 314
+2.79954918534312,2.6095153895334,1.50093369282537, 133P 315
+2.79567592427976,2.60308936949127,1.50233958573673, 133P 316
+2.79212144707681,2.59694213896444,1.50233955787497, 133P 317
+2.79208861180582,2.59688533108429,1.5023394425025, 133P 318
+2.79205576601067,2.59682848344905,1.50233921159134,0., 133P 319
+0.214931805995059,0.,0.,0.; 133P 320
+126,25,3,0,0,1,0,0.214931805995059,0.214931805995059, 135P 321
+0.214931805995059,0.214931805995059,0.268039755174466, 135P 322
+0.268039755174466,0.321647379403322,0.321647379403322, 135P 323
+0.375253295980632,0.375253295980632,0.428859212557942, 135P 324
+0.428859212557942,0.482485398311679,0.482485398311679, 135P 325
+0.536111584065416,0.536111584065416,0.589724735678272, 135P 326
+0.589724735678272,0.643337887291128,0.643337887291128, 135P 327
+0.696953672132254,0.696953672132254,0.75056945697338, 135P 328
+0.75056945697338,0.804196025861176,0.804196025861176, 135P 329
+0.857822594748972,0.857822594748972,0.857822594748972, 135P 330
+0.857822594748972,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1., 135P 331
+1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,2.79205576601067, 135P 332
+2.59682848344905,1.50233921159134,2.78856475155753, 135P 333
+2.59078643406731,1.50231466920452,2.78496555735457, 135P 334
+2.58428940273544,1.50090702071084,2.7785169260301, 135P 335
+2.57215630751218,1.49522048021271,2.77566884894633, 135P 336
+2.56653204050654,1.49091335151102,2.77126242286671, 135P 337
+2.55759808367841,1.48097689114612,2.76940878980327, 135P 338
+2.55369230509702,1.47468396846422,2.76697590156048, 135P 339
+2.54849656016389,1.46089026144819,2.76639051131046, 135P 340
+2.54721035809221,1.4533891422282,2.76639051131046, 135P 341
+2.54721035809221,1.43931668785405,2.76697629210924, 135P 342
+2.54849741162269,1.43181292064984,2.76940970780332, 135P 343
+2.55369424820275,1.41801311379398,2.77126345144159, 135P 344
+2.55760021777412,1.41171671617246,2.77566950992004, 135P 345
+2.56653333192945,1.40177454255664,2.77851705600564, 135P 346
+2.57215654501182,1.3974639367319,2.78499535191873, 135P 347
+2.58434546823553,1.39174524619089,2.78863235668074, 135P 348
+2.59090799054573,1.39033745479891,2.795676359005, 135P 349
+2.60309012131948,1.3903375100133,2.79954976839319, 135P 350
+2.60951633321585,1.39174548389609,2.80688226906995, 135P 351
+2.62121216005295,1.39746448503642,2.81033547918105, 135P 352
+2.62648560763612,1.40177521249922,2.81587993660705, 135P 353
+2.63476110131388,1.41171739708268,2.81834059251326, 135P 354
+2.63831651077573,1.41801366939315,2.82163097241694, 135P 355
+2.64301844732068,1.43181332808095,2.82245433305252, 135P 356
+2.64416835491297,1.43931707895464,2.82245433305252, 135P 357
+2.64416835491297,1.44635468642023,0.214931805995059, 135P 358
+0.857822594748972,0.,0.,0.; 135P 359
+126,1,1,0,0,1,0,0.52446716958112,0.52446716958112, 137P 360
+5.88170984842597,5.88170984842597,1.,1.,2.79205576601067, 137P 361
+2.59682848344905,1.50233921159134,3.0518618081059, 137P 362
+2.44682568844139,1.5041656893873,0.52446716958112, 137P 363
+5.88170984842597,0.,0.,0.; 137P 364
+126,9,3,0,0,1,0,0.,0.,0.,0.,0.0536934230006689, 139P 365
+0.0536934230006689,0.107386846001338,0.107386846001338, 139P 366
+0.161094073097757,0.161094073097757,0.214301619119749, 139P 367
+0.214301619119749,0.214301619119749,0.214301619119749,1.,1.,1., 139P 368
+1.,1.,1.,1.,1.,1.,1.,3.02846279036647,2.39589911823268, 139P 369
+1.4481966548418,3.02846279036647,2.39589911823268, 139P 370
+1.45524303581302,3.02892847973479,2.39725963404085, 139P 371
+1.46274786166799,3.03092751835573,2.4027086121763, 139P 372
+1.47653388994032,3.0324736131507,2.40678877666812, 139P 373
+1.48281651971276,3.03630347240917,2.41603959207784, 139P 374
+1.49273678153202,3.03884670801637,2.42183143663468, 139P 375
+1.49704080128731,3.04487475000721,2.43420504313217, 139P 376
+1.50272919433341,3.04836241318419,2.4407735559818, 139P 377
+1.50414108808445,3.0518618081059,2.44682568844139, 139P 378
+1.5041656893873,0.,0.214301619119749,0.,0.,0.; 139P 379
+126,27,3,0,0,1,0,0.214301619119749,0.214301619119749, 141P 380
+0.214301619119749,0.214301619119749,0.214801300194177, 141P 381
+0.214801300194177,0.268518436347836,0.268518436347836, 141P 382
+0.322235572501495,0.322235572501495,0.375929910974964, 141P 383
+0.375929910974964,0.429624249448432,0.429624249448432, 141P 384
+0.483360070716362,0.483360070716362,0.537095891984292, 141P 385
+0.537095891984292,0.590824465451825,0.590824465451825, 141P 386
+0.644553038919358,0.644553038919358,0.698274626129645, 141P 387
+0.698274626129645,0.751996213339931,0.751996213339931, 141P 388
+0.805727196456036,0.805727196456036,0.859458179572142, 141P 389
+0.859458179572142,0.859458179572142,0.859458179572142,1.,1.,1., 141P 390
+1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1., 141P 391
+1.,1.,1.,1.,3.0518618081059,2.44682568844139,1.5041656893873, 141P 392
+3.05189467151617,2.44688252504214,1.50416592042231, 141P 393
+3.05192753409739,2.44693931715265,1.5041660359894, 141P 394
+3.05549307318385,2.45309651797154,1.50416609182412, 141P 395
+3.05949272648003,2.45945729215264,1.50275554249609, 141P 396
+3.06726211406898,2.47090000058511,1.49703998993087, 141P 397
+3.07102068491619,2.47598990109039,1.49273576869316, 141P 398
+3.07713947921482,2.48391786421128,1.48281584907568, 141P 399
+3.07990969382691,2.48729066661856,1.4765338847846, 141P 400
+3.08364229551088,2.4917382366668,1.46274871343886, 141P 401
+3.08459108470655,2.49281989086178,1.45524405058708, 141P 402
+3.08459108470655,2.49281989086178,1.44114560442679, 141P 403
+3.08364102623755,2.49173677203557,1.43363553541458, 141P 404
+3.07990688228821,2.48728726871891,1.4198378612847, 141P 405
+3.07713644913755,2.48391408293792,1.413548758909, 141P 406
+3.07101894864862,2.47598750660055,1.40361706911682, 141P 407
+3.06726181813654,2.47089954033593,1.39930569540551, 141P 408
+3.05949369047113,2.45945873631261,1.39357864214337, 141P 409
+3.05549382535249,2.45309781686443,1.39216401610907, 141P 410
+3.04842742479024,2.44089510465926,1.39216390545245, 141P 411
+3.04490177140137,2.43426060158363,1.39357810194522, 141P 412
+3.03884632232277,2.42183055257612,1.39930479409509, 141P 413
+3.03630397279881,2.41604065251144,1.40361626152671, 141P 414
+3.03247488514606,2.40679199725877,1.41354851123259, 141P 415
+3.03092875177552,2.40271190054919,1.41983794036462, 141P 416
+3.02892905237636,2.39726126856286,1.43363562304748, 141P 417
+3.02846279036647,2.39589911823268,1.44114534472158, 141P 418
+3.02846279036647,2.39589911823268,1.4481966548418, 141P 419
+0.214301619119749,0.859458179572142,0.,0.,0.; 141P 420
+126,11,3,0,0,1,0,0.,0.,0.,0.,0.0536034508496916, 143P 421
+0.0536034508496916,0.107206901699383,0.107206901699383, 143P 422
+0.160836274226494,0.160836274226494,0.214465646753606, 143P 423
+0.214465646753606,0.214965338027958,0.214965338027958, 143P 424
+0.214965338027958,0.214965338027958,1.,1.,1.,1.,1.,1.,1.,1.,1., 143P 425
+1.,1.,1.,2.82512800129289,2.64790119716913,0.146341358091604, 143P 426
+2.82512800129289,2.64790119716913,0.153375931693926, 143P 427
+2.82429584214487,2.6467575979645,0.160876252503433, 143P 428
+2.82096877577344,2.64207984092149,0.174667606015805, 143P 429
+2.81848023834214,2.63854227254713,0.180959017649938, 143P 430
+2.81287029335679,2.63030595019336,0.190895221487007, 143P 431
+2.80937464372761,2.6250556200158,0.195203072922344, 143P 432
+2.8019495655957,2.6134104754991,0.200917545986461, 143P 433
+2.79802600182977,2.60701182779645,0.202323974032197, 143P 434
+2.79442346469945,2.60088955921633,0.202323616783064, 143P 435
+2.79439019664674,2.60083300120882,0.202323498368403, 143P 436
+2.79435691776122,2.60077640351561,0.202323264412545,0., 143P 437
+0.214965338027958,0.,0.,0.; 143P 438
+126,25,3,0,0,1,0,0.214965338027958,0.214965338027958, 145P 439
+0.214965338027958,0.214965338027958,0.268064393779044, 145P 440
+0.268064393779044,0.321663140804481,0.321663140804481, 145P 441
+0.375264853860477,0.375264853860477,0.428866566916473, 145P 442
+0.428866566916473,0.482490401930762,0.482490401930762, 145P 443
+0.536114236945052,0.536114236945052,0.589713754779553, 145P 444
+0.589713754779553,0.643313272614054,0.643313272614054, 145P 445
+0.696946545154349,0.696946545154349,0.750579817694643, 145P 446
+0.750579817694643,0.80420856415716,0.80420856415716, 145P 447
+0.857837310619676,0.857837310619676,0.857837310619676, 145P 448
+0.857837310619676,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1., 145P 449
+1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,2.79435691776122, 145P 450
+2.60077640351561,0.202323264412545,2.7908205794495, 145P 451
+2.59476212185507,0.202298403391788,2.78717258148393, 145P 452
+2.58829374258335,0.20089088828563,2.78063310413149, 145P 453
+2.57621283376751,0.195204139932007,2.77774307977205, 145P 454
+2.57061211421537,0.190896622990145,2.77327022749279, 145P 455
+2.56171527701206,0.180958967474332,2.7713878409117, 145P 456
+2.55782586187217,0.174665298814503,2.76891689677483, 145P 457
+2.55265215430413,0.160870987339545,2.76832220882138, 145P 458
+2.5513715879345,0.153370046084126,2.76832220882138, 145P 459
+2.5513715879345,0.13929845184918,2.76891733704413, 145P 460
+2.55265309773035,0.131794618299873,2.77138907879071, 145P 461
+2.55782843216865,0.117994032680901,2.7732717987579, 145P 462
+2.56171848419141,0.1116969604718,2.77774459730809, 145P 463
+2.57061505085647,0.101754786091008,2.7806340445855, 145P 464
+2.5762145985393,0.0974448326775918,2.78720334673154, 145P 465
+2.58835055033045,0.0917279080641825,2.79088942802188, 145P 466
+2.59488370252995,0.0903211906000097,2.79802626139351, 145P 467
+2.6070122689075,0.090321898331101,2.80194971410995, 145P 468
+2.61341069441574,0.09173095500954,2.80937379162173, 145P 469
+2.6250542976177,0.0974518609747286,2.81286857613977, 145P 470
+2.63030336349984,0.101763373568879,2.8184780752317, 145P 471
+2.63853916221753,0.111705688485218,2.82096697861449, 145P 472
+2.64207729638801,0.118001154377899,2.82429514344403, 145P 473
+2.64675663337955,0.131799840659231,2.82512800129289, 145P 474
+2.64790119716913,0.139303464855054,2.82512800129289, 145P 475
+2.64790119716913,0.146341358091604,0.214965338027958, 145P 476
+0.857837310619676,0.,0.,0.; 145P 477
+126,1,1,0,0,1,0,0.383470024346898,0.383470024346898, 147P 478
+5.74104929384228,5.74104929384228,1.,1.,2.79435691776122, 147P 479
+2.60077640351561,0.202323264412545,3.0541792832321, 147P 480
+2.45076418396974,0.204149856964437,0.383470024346898, 147P 481
+5.74104929384228,0.,0.,0.; 147P 482
+126,9,3,0,0,1,0,0.,0.,0.,0.,0.0536756462842513, 149P 483
+0.0536756462842513,0.107351292568503,0.107351292568503, 149P 484
+0.161019938737055,0.161019938737055,0.214188839038655, 149P 485
+0.214188839038655,0.214188839038655,0.214188839038655,1.,1.,1., 149P 486
+1.,1.,1.,1.,1.,1.,1.,3.03003274874208,2.40026920342306, 149P 487
+0.148175567257292,3.03003274874208,2.40026920342306, 149P 488
+0.155219615326092,3.0305177012307,2.4016174861601, 149P 489
+0.162723702296262,3.03259527702783,2.40702108182381, 149P 490
+0.176511982480063,3.03420054129481,2.41106830083357, 149P 491
+0.182797438866443,3.03816635246852,2.42024604548588, 149P 492
+0.192721647368312,3.04079484785246,2.425991404355, 149P 493
+0.197026476777187,3.04700569707277,2.43826028146267, 149P 494
+0.202714109415327,3.05059070945896,2.44477040105538, 149P 495
+0.204124628720078,3.0541792832321,2.45076418396974, 149P 496
+0.204149856964437,0.,0.214188839038655,0.,0.,0.; 149P 497
+126,27,3,0,0,1,0,0.214188839038655,0.214188839038655, 151P 498
+0.214188839038655,0.214188839038655,0.214688584905608, 151P 499
+0.214688584905608,0.268440491190975,0.268440491190975, 151P 500
+0.322192397476342,0.322192397476342,0.375923602321502, 151P 501
+0.375923602321502,0.429654807166662,0.429654807166662, 151P 502
+0.4834054490847,0.4834054490847,0.537156091002739, 151P 503
+0.537156091002739,0.590947397157691,0.590947397157691, 151P 504
+0.644738703312643,0.644738703312643,0.698396716312689, 151P 505
+0.698396716312689,0.752054729312735,0.752054729312735, 151P 506
+0.805787032878242,0.805787032878242,0.85951933644375, 151P 507
+0.85951933644375,0.85951933644375,0.85951933644375,1.,1.,1.,1., 151P 508
+1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1., 151P 509
+1.,1.,1.,3.0541792832321,2.45076418396974,0.204149856964437, 151P 510
+3.0542130130046,2.45082052081744,0.204150094090102, 151P 511
+3.05424674123998,2.4508768131307,0.204150215741505, 151P 512
+3.05790800451698,2.45698290973559,0.204150931857922, 151P 513
+3.06200680762706,2.46328598098478,0.202739949040806, 151P 514
+3.0699577668047,2.4746193926361,0.197026890848492, 151P 515
+3.07379896814154,2.47965787921492,0.1927257379497, 151P 516
+3.08005090856056,2.48750598750913,0.182811979335477, 151P 517
+3.08288113200521,2.49084551617706,0.176532065069204, 151P 518
+3.08669517447325,2.49524986597752,0.162746079379626, 151P 519
+3.08766512284893,2.49632157373514,0.15523837502906, 151P 520
+3.08766512284893,2.49632157373514,0.141133145795044, 151P 521
+3.08669468783438,2.49524929742456,0.133622910971993, 151P 522
+3.08288220039131,2.49084675651441,0.119828381984534, 151P 523
+3.0800540551805,2.48750970535404,0.113542414518033, 151P 524
+3.07380544185441,2.47966623762208,0.103611910802122, 151P 525
+3.06996452185292,2.47462861492305,0.0992988820269599, 151P 526
+3.0620116625498,2.46329330712459,0.0935667554827779, 151P 527
+3.05791066348292,2.45698734424404,0.0921488566511604, 151P 528
+3.05065926687557,2.44489377848409,0.0921474383308249, 151P 529
+3.0470365694558,2.43832092605836,0.0935575508325125, 151P 530
+3.04079906105907,2.42600006730927,0.0992765102067774, 151P 531
+3.03817178907305,2.42025796809222,0.103584484060531, 151P 532
+3.03420505039581,2.41107939358823,0.113516126973044, 151P 533
+3.03259848435029,2.4070292682282,0.119809279130587, 151P 534
+3.03051863870651,2.40162007971027,0.133612605560334, 151P 535
+3.03003274874208,2.40026920342306,0.141124083849746, 151P 536
+3.03003274874208,2.40026920342306,0.148175567257293, 151P 537
+0.214188839038655,0.85951933644375,0.,0.,0.; 151P 538
+126,21,3,0,0,1,0,0.190556118936317,0.190556118936317, 153P 539
+0.190556118936317,0.190556118936317,0.191450128608833, 153P 540
+0.191450128608833,0.239314040183927,0.239314040183927, 153P 541
+0.287177951759022,0.287177951759022,0.335041114384101, 153P 542
+0.335041114384101,0.382904277009179,0.382904277009179, 153P 543
+0.430767439634258,0.430767439634258,0.478630602259336, 153P 544
+0.478630602259336,0.526494513834431,0.526494513834431, 153P 545
+0.574358425409526,0.574358425409526,0.575252435082043, 153P 546
+0.575252435082043,0.575252435082043,0.575252435082043,1.,1.,1., 153P 547
+1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1., 153P 548
+3.31157285126126,1.69665853469879,1.49999875810733, 153P 549
+3.31169046027641,1.69665853469879,1.49999958704282, 153P 550
+3.31180792996474,1.69665856927967,1.5,3.31820660619016, 153P 551
+1.69666232746588,1.5,3.32490458661711,1.69677501345223, 153P 552
+1.49874405536234,3.33722272910241,1.69717537563754, 153P 553
+1.49364039137103,3.34284313997528,1.69745745697138, 153P 554
+1.48979283519587,3.35171831942725,1.69798658506927, 153P 555
+1.48091756973493,3.35556579588885,1.69826805032716, 153P 556
+1.47529719646578,3.3606693440454,1.69866515231094, 153P 557
+1.46297916438919,3.36192525404851,1.69877507152762, 153P 558
+1.45628125493767,3.36192525404851,1.69877507152762, 153P 559
+1.44371874506233,3.3606693440454,1.69866515231094, 153P 560
+1.43702083561081,3.35556579588885,1.69826805032716, 153P 561
+1.42470280353421,3.35171831942725,1.69798658506927, 153P 562
+1.41908243026507,3.34284313997528,1.69745745697138, 153P 563
+1.41020716480413,3.33722272910241,1.69717537563754, 153P 564
+1.40635960862897,3.32490458661711,1.69677501345223, 153P 565
+1.40125594463766,3.31820660619016,1.69666232746588,1.4, 153P 566
+3.31180792996474,1.69665856927967,1.4,3.31169046027641, 153P 567
+1.69665853469879,1.40000041295718,3.31157285126126, 153P 568
+1.69665853469879,1.40000124189267,0.190556118936317, 153P 569
+0.575252435082043,0.,0.,0.; 153P 570
+126,9,3,0,0,1,0,0.765808554018358,0.765808554018358, 155P 571
+0.765808554018358,0.765808554018358,0.813671529846346, 155P 572
+0.813671529846346,0.861534505674333,0.861534505674333, 155P 573
+0.909396594150762,0.909396594150762,0.956364672954675, 155P 574
+0.956364672954675,0.956364672954675,0.956364672954675,1.,1.,1., 155P 575
+1.,1.,1.,1.,1.,1.,1.,3.26192525404851,1.69871613271428,1.45, 155P 576
+3.26192525404851,1.69871613271428,1.45628123042362, 155P 577
+3.26318115305209,1.69860770614295,1.46297916339015, 155P 578
+3.26828477934519,1.69821664712561,1.47529733295916, 155P 579
+3.27213234911813,1.6979397296386,1.48091781558889, 155P 580
+3.28100773640093,1.69742107445212,1.48979311806962, 155P 581
+3.28662818902835,1.6971456200459,1.49364062060169, 155P 582
+3.29883122728901,1.69676336321912,1.49869647692067, 155P 583
+3.30539409317694,1.69665853469879,1.49995520879425, 155P 584
+3.31157285126126,1.69665853469879,1.49999875810733, 155P 585
+0.765808554018358,0.956364672954675,0.,0.,0.; 155P 586
+126,1,1,0,0,1,0,0.0411519603098712,0.0411519603098712, 157P 587
+6.08273319543556,6.08273319543556,1.,1.,3.26192525404851, 157P 588
+1.69871613271428,1.45,3.26192525404851,2.00079519447057,1.45, 157P 589
+0.0411519603098712,6.08273319543556,0.,0.,0.; 157P 590
+126,17,3,0,0,1,0,0.,0.,0.,0.,0.0479365135772279, 159P 591
+0.0479365135772279,0.0958730271544559,0.0958730271544559, 159P 592
+0.143811562050636,0.143811562050636,0.191750096946816, 159P 593
+0.191750096946816,0.239681277572823,0.239681277572823, 159P 594
+0.28761245819883,0.28761245819883,0.335548147126999, 159P 595
+0.335548147126999,0.383483836055169,0.383483836055169, 159P 596
+0.383483836055169,0.383483836055169,1.,1.,1.,1.,1.,1.,1.,1.,1., 159P 597
+1.,1.,1.,1.,1.,1.,1.,1.,1.,3.36192525404851,2.00091432844354, 159P 598
+1.45,3.36192525404851,2.00091432844354,1.45629088104688, 159P 599
+3.36066559905479,2.00069133881841,1.46299278028855, 159P 600
+3.35555946611639,1.9998895057296,1.47530788818283, 159P 601
+3.35171362369578,1.99932261964193,1.48092213594729, 159P 602
+3.34284875164419,1.99825989574378,1.48978735302757, 159P 603
+3.33723431427349,1.99769437414139,1.49363358756899, 159P 604
+3.32491862782502,1.99689200850241,1.49874023745499, 159P 605
+3.31821639601988,1.99666613173672,1.5,3.30563507720379, 159P 606
+1.9966513527538,1.5,3.29893329195044,1.99686142242674, 159P 607
+1.49874058322683,3.28661784846628,1.99763459782505, 159P 608
+1.49363451317523,3.28100324060302,1.99818672961726, 159P 609
+1.48978849459286,3.27213752896682,1.99922824265155, 159P 610
+1.48092312310724,3.26829130889454,1.99978586366611, 159P 611
+1.47530843205661,3.26318486186508,2.00057530775391, 159P 612
+1.46299276637732,3.26192525404851,2.00079519447057, 159P 613
+1.45629077282522,3.26192525404851,2.00079519447057,1.45,0., 159P 614
+0.383483836055169,0.,0.,0.; 159P 615
+126,17,3,0,0,1,0,0.383483836055169,0.383483836055169, 161P 616
+0.383483836055169,0.383483836055169,0.431419524983338, 161P 617
+0.431419524983338,0.479355213911508,0.479355213911508, 161P 618
+0.527286394537515,0.527286394537515,0.575217575163521, 161P 619
+0.575217575163521,0.623156110059701,0.623156110059701, 161P 620
+0.671094644955882,0.671094644955882,0.71903115853311, 161P 621
+0.71903115853311,0.766967672110337,0.766967672110337, 161P 622
+0.766967672110337,0.766967672110337,1.,1.,1.,1.,1.,1.,1.,1.,1., 161P 623
+1.,1.,1.,1.,1.,1.,1.,1.,1.,3.26192525404851,2.00079519447057, 161P 624
+1.45,3.26192525404851,2.00079519447057,1.44370922717478, 161P 625
+3.26318486186508,2.00057530775391,1.43700723362268, 161P 626
+3.26829130889454,1.99978586366611,1.42469156794339, 161P 627
+3.27213752896682,1.99922824265155,1.41907687689276, 161P 628
+3.28100324060302,1.99818672961726,1.41021150540714, 161P 629
+3.28661784846628,1.99763459782505,1.40636548682477, 161P 630
+3.29893329195044,1.99686142242674,1.40125941677317, 161P 631
+3.30563507720379,1.9966513527538,1.4,3.31821639601988, 161P 632
+1.99666613173672,1.4,3.32491862782502,1.99689200850241, 161P 633
+1.40125976254501,3.33723431427349,1.99769437414139, 161P 634
+1.40636641243101,3.34284875164419,1.99825989574378, 161P 635
+1.41021264697242,3.35171362369578,1.99932261964193, 161P 636
+1.41907786405271,3.35555946611639,1.9998895057296, 161P 637
+1.42469211181717,3.36066559905479,2.00069133881841, 161P 638
+1.43700721971145,3.36192525404851,2.00091432844354, 161P 639
+1.44370911895312,3.36192525404851,2.00091432844354,1.45, 161P 640
+0.383483836055169,0.766967672110337,0.,0.,0.; 161P 641
+126,9,3,0,0,1,0,0.575252435082043,0.575252435082043, 163P 642
+0.575252435082043,0.575252435082043,0.622220513885954, 163P 643
+0.622220513885954,0.670082602362383,0.670082602362383, 163P 644
+0.717945578190371,0.717945578190371,0.765808554018358, 163P 645
+0.765808554018358,0.765808554018358,0.765808554018358,1.,1.,1., 163P 646
+1.,1.,1.,1.,1.,1.,1.,3.31157285126126,1.69665853469879, 163P 647
+1.40000124189267,3.30539409317694,1.69665853469879, 163P 648
+1.40004479120575,3.29883122728901,1.69676336321912, 163P 649
+1.40130352307933,3.28662818902835,1.6971456200459, 163P 650
+1.40635937939831,3.28100773640093,1.69742107445212, 163P 651
+1.41020688193038,3.27213234911813,1.6979397296386, 163P 652
+1.41908218441111,3.26828477934519,1.69821664712561, 163P 653
+1.42470266704084,3.26318115305209,1.69860770614295, 163P 654
+1.43702083660985,3.26192525404851,1.69871613271428, 163P 655
+1.44371876957638,3.26192525404851,1.69871613271428,1.45, 163P 656
+0.575252435082043,0.765808554018358,0.,0.,0.; 163P 657
+126,21,3,0,0,1,0,0.190556118936314,0.190556118936314, 165P 658
+0.190556118936314,0.190556118936314,0.191450128608833, 165P 659
+0.191450128608833,0.239314040183927,0.239314040183927, 165P 660
+0.287177951759022,0.287177951759022,0.3350411143841, 165P 661
+0.3350411143841,0.382904277009179,0.382904277009179, 165P 662
+0.430767439634258,0.430767439634258,0.478630602259336, 165P 663
+0.478630602259336,0.526494513834431,0.526494513834431, 165P 664
+0.574358425409525,0.574358425409525,0.575252435082045, 165P 665
+0.575252435082045,0.575252435082045,0.575252435082045,1.,1.,1., 165P 666
+1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1., 165P 667
+3.31157285126126,1.69665853469879,0.199998758107332, 165P 668
+3.31169046027641,1.69665853469879,0.199999587042816, 165P 669
+3.31180792996474,1.69665856927967,0.2,3.31820660619016, 165P 670
+1.69666232746588,0.2,3.32490458661711,1.69677501345223, 165P 671
+0.198744055362335,3.33722272910241,1.69717537563754, 165P 672
+0.19364039137103,3.34284313997528,1.69745745697138, 165P 673
+0.189792835195874,3.35171831942725,1.69798658506927, 165P 674
+0.180917569734931,3.35556579588885,1.69826805032716, 165P 675
+0.175297196465785,3.3606693440454,1.69866515231094, 165P 676
+0.162979164389189,3.36192525404851,1.69877507152762, 165P 677
+0.156281254937674,3.36192525404851,1.69877507152762, 165P 678
+0.143718745062326,3.3606693440454,1.69866515231094, 165P 679
+0.13702083561081,3.35556579588885,1.69826805032716, 165P 680
+0.124702803534215,3.35171831942725,1.69798658506927, 165P 681
+0.119082430265069,3.34284313997528,1.69745745697138, 165P 682
+0.110207164804126,3.33722272910241,1.69717537563754, 165P 683
+0.106359608628969,3.32490458661711,1.69677501345223, 165P 684
+0.101255944637665,3.31820660619016,1.69666232746588, 165P 685
+0.0999999999999999,3.31180792996474,1.69665856927967, 165P 686
+0.0999999999999999,3.31169046027641,1.69665853469879, 165P 687
+0.100000412957184,3.31157285126126,1.69665853469879, 165P 688
+0.100001241892668,0.190556118936314,0.575252435082045,0.,0.,0.; 165P 689
+126,9,3,0,0,1,0,0.765808554018358,0.765808554018358, 167P 690
+0.765808554018358,0.765808554018358,0.813671529846345, 167P 691
+0.813671529846345,0.861534505674333,0.861534505674333, 167P 692
+0.909396594150762,0.909396594150762,0.956364672954672, 167P 693
+0.956364672954672,0.956364672954672,0.956364672954672,1.,1.,1., 167P 694
+1.,1.,1.,1.,1.,1.,1.,3.26192525404851,1.69871613271428,0.15, 167P 695
+3.26192525404851,1.69871613271428,0.15628123042362, 167P 696
+3.26318115305209,1.69860770614295,0.162979163390146, 167P 697
+3.26828477934519,1.69821664712561,0.175297332959157, 167P 698
+3.27213234911813,1.6979397296386,0.180917815588894, 167P 699
+3.28100773640093,1.69742107445212,0.189793118069621, 167P 700
+3.28662818902835,1.6971456200459,0.19364062060169, 167P 701
+3.29883122728901,1.69676336321912,0.198696476920667, 167P 702
+3.30539409317694,1.69665853469879,0.199955208794248, 167P 703
+3.31157285126126,1.69665853469879,0.199998758107332, 167P 704
+0.765808554018358,0.956364672954672,0.,0.,0.; 167P 705
+126,1,1,0,0,1,0,0.0411519603098713,0.0411519603098713, 169P 706
+6.08273319543555,6.08273319543555,1.,1.,3.26192525404851, 169P 707
+1.69871613271428,0.15,3.26192525404851,2.00079519447057,0.15, 169P 708
+0.0411519603098713,6.08273319543555,0.,0.,0.; 169P 709
+126,17,3,0,0,1,0,0.,0.,0.,0.,0.0479365135772278, 171P 710
+0.0479365135772278,0.0958730271544556,0.0958730271544556, 171P 711
+0.143811562050636,0.143811562050636,0.191750096946816, 171P 712
+0.191750096946816,0.239681277572822,0.239681277572822, 171P 713
+0.287612458198829,0.287612458198829,0.335548147126999, 171P 714
+0.335548147126999,0.383483836055169,0.383483836055169, 171P 715
+0.383483836055169,0.383483836055169,1.,1.,1.,1.,1.,1.,1.,1.,1., 171P 716
+1.,1.,1.,1.,1.,1.,1.,1.,1.,3.36192525404851,2.00091432844354, 171P 717
+0.15,3.36192525404851,2.00091432844354,0.15629088104688, 171P 718
+3.36066559905479,2.00069133881841,0.162992780288549, 171P 719
+3.35555946611639,1.9998895057296,0.175307888182829, 171P 720
+3.35171362369578,1.99932261964193,0.180922135947288, 171P 721
+3.34284875164419,1.99825989574378,0.189787353027575, 171P 722
+3.33723431427349,1.99769437414139,0.193633587568991, 171P 723
+3.32491862782502,1.99689200850241,0.198740237454992, 171P 724
+3.31821639601988,1.99666613173672,0.2,3.30563507720379, 171P 725
+1.9966513527538,0.2,3.29893329195044,1.99686142242674, 171P 726
+0.198740583226828,3.28661784846628,1.99763459782505, 171P 727
+0.193634513175227,3.28100324060302,1.99818672961726, 171P 728
+0.189788494592864,3.27213752896682,1.99922824265155, 171P 729
+0.180923123107237,3.26829130889454,1.99978586366611, 171P 730
+0.175308432056607,3.26318486186508,2.00057530775391, 171P 731
+0.162992766377315,3.26192525404851,2.00079519447057, 171P 732
+0.156290772825219,3.26192525404851,2.00079519447057,0.15,0., 171P 733
+0.383483836055169,0.,0.,0.; 171P 734
+126,17,3,0,0,1,0,0.383483836055169,0.383483836055169, 173P 735
+0.383483836055169,0.383483836055169,0.431419524983338, 173P 736
+0.431419524983338,0.479355213911508,0.479355213911508, 173P 737
+0.527286394537514,0.527286394537514,0.575217575163521, 173P 738
+0.575217575163521,0.623156110059701,0.623156110059701, 173P 739
+0.671094644955881,0.671094644955881,0.719031158533109, 173P 740
+0.719031158533109,0.766967672110337,0.766967672110337, 173P 741
+0.766967672110337,0.766967672110337,1.,1.,1.,1.,1.,1.,1.,1.,1., 173P 742
+1.,1.,1.,1.,1.,1.,1.,1.,1.,3.26192525404851,2.00079519447057, 173P 743
+0.15,3.26192525404851,2.00079519447057,0.143709227174781, 173P 744
+3.26318486186508,2.00057530775391,0.137007233622685, 173P 745
+3.26829130889454,1.99978586366611,0.124691567943393, 173P 746
+3.27213752896682,1.99922824265155,0.119076876892762, 173P 747
+3.28100324060302,1.99818672961726,0.110211505407136, 173P 748
+3.28661784846628,1.99763459782505,0.106365486824773, 173P 749
+3.29893329195044,1.99686142242674,0.101259416773172, 173P 750
+3.30563507720379,1.9966513527538,0.0999999999999998, 173P 751
+3.31821639601988,1.99666613173672,0.0999999999999998, 173P 752
+3.32491862782502,1.99689200850241,0.101259762545008, 173P 753
+3.33723431427349,1.99769437414139,0.106366412431009, 173P 754
+3.34284875164419,1.99825989574378,0.110212646972425, 173P 755
+3.35171362369578,1.99932261964193,0.119077864052712, 173P 756
+3.35555946611639,1.9998895057296,0.124692111817171, 173P 757
+3.36066559905479,2.00069133881841,0.13700721971145, 173P 758
+3.36192525404851,2.00091432844354,0.14370911895312, 173P 759
+3.36192525404851,2.00091432844354,0.15,0.383483836055169, 173P 760
+0.766967672110337,0.,0.,0.; 173P 761
+126,9,3,0,0,1,0,0.575252435082045,0.575252435082045, 175P 762
+0.575252435082045,0.575252435082045,0.622220513885954, 175P 763
+0.622220513885954,0.670082602362383,0.670082602362383, 175P 764
+0.71794557819037,0.71794557819037,0.765808554018358, 175P 765
+0.765808554018358,0.765808554018358,0.765808554018358,1.,1.,1., 175P 766
+1.,1.,1.,1.,1.,1.,1.,3.31157285126126,1.69665853469879, 175P 767
+0.100001241892667,3.30539409317694,1.69665853469879, 175P 768
+0.100044791205752,3.29883122728901,1.69676336321912, 175P 769
+0.101303523079333,3.28662818902835,1.6971456200459, 175P 770
+0.106359379398309,3.28100773640093,1.69742107445212, 175P 771
+0.110206881930379,3.27213234911813,1.6979397296386, 175P 772
+0.119082184411105,3.26828477934519,1.69821664712561, 175P 773
+0.124702667040843,3.26318115305209,1.69860770614295, 175P 774
+0.137020836609853,3.26192525404851,1.69871613271428, 175P 775
+0.14371876957638,3.26192525404851,1.69871613271428,0.15, 175P 776
+0.575252435082045,0.765808554018358,0.,0.,0.; 175P 777
+126,8,2,0,1,0,0,-3.14159265358979,-3.14159265358979, 177P 778
+-3.14159265358979,-1.5707963267949,-1.5707963267949,0.,0., 177P 779
+1.5707963267949,1.5707963267949,3.14159265358979, 177P 780
+3.14159265358979,3.14159265358979,1.,0.707106781186546,1., 177P 781
+0.707106781186546,1.,0.707106781186546,1.,0.707106781186546,1., 177P 782
+3.32657285126126,2.29665853469879,1.85,3.32657285126126, 177P 783
+2.28165853469879,1.85,3.31157285126126,2.28165853469879,1.85, 177P 784
+3.29657285126126,2.28165853469879,1.85,3.29657285126126, 177P 785
+2.29665853469879,1.85,3.29657285126126,2.31165853469879,1.85, 177P 786
+3.31157285126126,2.31165853469879,1.85,3.32657285126126, 177P 787
+2.31165853469879,1.85,3.32657285126126,2.29665853469879,1.85, 177P 788
+-3.14159265358979,3.14159265358979,0.,0.,0.; 177P 789
+126,1,1,0,0,1,0,0.,0.,2.36367821873044,2.36367821873044,1.,1., 179P 790
+3.32657285126126,2.29665853469879,1.85,3.32657285126126, 179P 791
+2.29665853469879,1.81454482671904,0.,2.36367821873044,0.,0.,0.; 179P 792
+126,8,2,0,1,0,0,-3.14159265358979,-3.14159265358979, 181P 793
+-3.14159265358979,-1.5707963267949,-1.5707963267949,0.,0., 181P 794
+1.5707963267949,1.5707963267949,3.14159265358979, 181P 795
+3.14159265358979,3.14159265358979,1.,0.707106781186546,1., 181P 796
+0.707106781186546,1.,0.707106781186546,1.,0.707106781186546,1., 181P 797
+3.32657285126126,2.29665853469879,1.81454482671904, 181P 798
+3.32657285126126,2.31165853469879,1.81454482671904, 181P 799
+3.31157285126126,2.31165853469879,1.81454482671904, 181P 800
+3.29657285126126,2.31165853469879,1.81454482671904, 181P 801
+3.29657285126126,2.29665853469879,1.81454482671904, 181P 802
+3.29657285126126,2.28165853469879,1.81454482671904, 181P 803
+3.31157285126126,2.28165853469879,1.81454482671904, 181P 804
+3.32657285126126,2.28165853469879,1.81454482671904, 181P 805
+3.32657285126126,2.29665853469879,1.81454482671904, 181P 806
+-3.14159265358979,3.14159265358979,0.,0.,0.; 181P 807
+126,8,2,0,1,0,0,-3.14159265358979,-3.14159265358979, 183P 808
+-3.14159265358979,-1.5707963267949,-1.5707963267949,0.,0., 183P 809
+1.5707963267949,1.5707963267949,3.14159265358979, 183P 810
+3.14159265358979,3.14159265358979,1.,0.707106781186547,1., 183P 811
+0.707106781186547,1.,0.707106781186547,1.,0.707106781186547,1., 183P 812
+3.87157285126126,2.29665853469879,0.,3.87157285126126, 183P 813
+2.85665853469879,0.,3.31157285126126,2.85665853469879,0., 183P 814
+2.75157285126126,2.85665853469879,0.,2.75157285126126, 183P 815
+2.29665853469879,0.,2.75157285126126,1.73665853469879,0., 183P 816
+3.31157285126126,1.73665853469879,0.,3.87157285126126, 183P 817
+1.73665853469879,0.,3.87157285126126,2.29665853469879,0., 183P 818
+-3.14159265358979,3.14159265358979,0.,0.,0.; 183P 819
+126,1,1,0,0,1,0,-0.0487659849094174,-0.0487659849094174, 185P 820
+0.0487659849094175,0.0487659849094175,1.,1.,3.87157285126126, 185P 821
+2.29665853469879,-8.46872878035922D-17,3.91157285126126, 185P 822
+2.29665853469879,0.0400000000000001,-0.0487659849094174, 185P 823
+0.0487659849094175,0.,0.,0.; 185P 824
+126,8,2,0,1,0,0,-3.14159265358979,-3.14159265358979, 187P 825
+-3.14159265358979,-1.5707963267949,-1.5707963267949,0.,0., 187P 826
+1.5707963267949,1.5707963267949,3.14159265358979, 187P 827
+3.14159265358979,3.14159265358979,1.,0.707106781186547,1., 187P 828
+0.707106781186548,1.,0.707106781186548,1.,0.707106781186547,1., 187P 829
+3.91157285126126,2.29665853469879,0.04,3.91157285126126, 187P 830
+1.69665853469879,0.04,3.31157285126126,1.69665853469879,0.04, 187P 831
+2.71157285126126,1.69665853469879,0.04,2.71157285126126, 187P 832
+2.29665853469879,0.04,2.71157285126126,2.89665853469879,0.04, 187P 833
+3.31157285126126,2.89665853469879,0.04,3.91157285126126, 187P 834
+2.89665853469879,0.04,3.91157285126126,2.29665853469879,0.04, 187P 835
+-3.14159265358979,3.14159265358979,0.,0.,0.; 187P 836
+126,8,2,0,1,0,0,-3.14159265358979,-3.14159265358979, 189P 837
+-3.14159265358979,-1.5707963267949,-1.5707963267949,0.,0., 189P 838
+1.5707963267949,1.5707963267949,3.14159265358979, 189P 839
+3.14159265358979,3.14159265358979,1.,0.707106781186547,1., 189P 840
+0.707106781186548,1.,0.707106781186548,1.,0.707106781186547,1., 189P 841
+3.91157285126126,2.29665853469879,1.56,3.91157285126126, 189P 842
+2.89665853469879,1.56,3.31157285126126,2.89665853469879,1.56, 189P 843
+2.71157285126126,2.89665853469879,1.56,2.71157285126126, 189P 844
+2.29665853469879,1.56,2.71157285126126,1.69665853469879,1.56, 189P 845
+3.31157285126126,1.69665853469879,1.56,3.91157285126126, 189P 846
+1.69665853469879,1.56,3.91157285126126,2.29665853469879,1.56, 189P 847
+-3.14159265358979,3.14159265358979,0.,0.,0.; 189P 848
+126,1,1,0,0,1,0,-2.6,-2.6,-0.0666666666666667, 191P 849
+-0.0666666666666667,1.,1.,3.91157285126126,2.29665853469879, 191P 850
+1.56,3.91157285126126,2.29665853469879,0.04,-2.6, 191P 851
+-0.0666666666666667,0.,0.,0.; 191P 852
+126,4,2,0,0,0,0,0.,0.,0.,1.5707963267949,1.5707963267949, 193P 853
+3.14159265358979,3.14159265358979,3.14159265358979,1., 193P 854
+0.707106781186548,1.,0.707106781186548,1.,3.01157285126126, 193P 855
+2.29665853469879,0.,3.01157285126126,1.99665853469879,0., 193P 856
+3.31157285126126,1.99665853469879,0.,3.61157285126126, 193P 857
+1.99665853469879,0.,3.61157285126126,2.29665853469879,0.,0., 193P 858
+3.14159265358979,0.,0.,0.; 193P 859
+126,4,2,0,0,0,0,3.14159265358979,3.14159265358979, 195P 860
+3.14159265358979,4.71238898038469,4.71238898038469, 195P 861
+6.28318530717959,6.28318530717959,6.28318530717959,1., 195P 862
+0.707106781186548,1.,0.707106781186548,1.,3.61157285126126, 195P 863
+2.29665853469879,0.,3.61157285126126,2.59665853469879,0., 195P 864
+3.31157285126126,2.59665853469879,0.,3.01157285126126, 195P 865
+2.59665853469879,0.,3.01157285126126,2.29665853469879,0., 195P 866
+3.14159265358979,6.28318530717959,0.,0.,0.; 195P 867
+126,4,2,0,0,0,0,0.,0.,0.,1.5707963267949,1.5707963267949, 197P 868
+3.14159265358979,3.14159265358979,3.14159265358979,1., 197P 869
+0.707106781186548,1.,0.707106781186548,1.,3.01157285126126, 197P 870
+2.29665853469879,1.65,3.01157285126126,2.59665853469879,1.65, 197P 871
+3.31157285126126,2.59665853469879,1.65,3.61157285126126, 197P 872
+2.59665853469879,1.65,3.61157285126126,2.29665853469879,1.65,0., 197P 873
+3.14159265358979,0.,0.,0.; 197P 874
+126,1,1,0,0,1,0,-1.15470053837925,-1.15470053837925, 199P 875
+1.03923048454133,1.03923048454133,1.,1.,3.61157285126126, 199P 876
+2.29665853469879,1.65,3.32657285126126,2.29665853469879, 199P 877
+1.81454482671904,-1.15470053837925,1.03923048454133,0.,0.,0.; 199P 878
+126,4,2,0,0,0,0,3.14159265358979,3.14159265358979, 201P 879
+3.14159265358979,4.71238898038469,4.71238898038469, 201P 880
+6.28318530717959,6.28318530717959,6.28318530717959,1., 201P 881
+0.707106781186548,1.,0.707106781186548,1.,3.61157285126126, 201P 882
+2.29665853469879,1.65,3.61157285126126,1.99665853469879,1.65, 201P 883
+3.31157285126126,1.99665853469879,1.65,3.01157285126126, 201P 884
+1.99665853469879,1.65,3.01157285126126,2.29665853469879,1.65, 201P 885
+3.14159265358979,6.28318530717959,0.,0.,0.; 201P 886
+126,1,1,0,0,1,0,-2.75,-2.75,2.75,2.75,1.,1.,3.61157285126126, 203P 887
+2.29665853469879,0.,3.61157285126126,2.29665853469879,1.65, 203P 888
+-2.75,2.75,0.,0.,0.; 203P 889
+126,8,2,0,1,0,0,-3.14159265358979,-3.14159265358979, 205P 890
+-3.14159265358979,-1.5707963267949,-1.5707963267949,0.,0., 205P 891
+1.5707963267949,1.5707963267949,3.14159265358979, 205P 892
+3.14159265358979,3.14159265358979,1.,0.707106781186547,1., 205P 893
+0.707106781186547,1.,0.707106781186547,1.,0.707106781186547,1., 205P 894
+3.87157285126126,2.29665853469879,1.6,3.87157285126126, 205P 895
+1.73665853469879,1.6,3.31157285126126,1.73665853469879,1.6, 205P 896
+2.75157285126126,1.73665853469879,1.6,2.75157285126126, 205P 897
+2.29665853469879,1.6,2.75157285126126,2.85665853469879,1.6, 205P 898
+3.31157285126126,2.85665853469879,1.6,3.87157285126126, 205P 899
+2.85665853469879,1.6,3.87157285126126,2.29665853469879,1.6, 205P 900
+-3.14159265358979,3.14159265358979,0.,0.,0.; 205P 901
+126,1,1,0,0,1,0,-0.0487659849094172,-0.0487659849094172, 207P 902
+0.0487659849094176,0.0487659849094176,1.,1.,3.87157285126126, 207P 903
+2.29665853469879,1.6,3.91157285126126,2.29665853469879,1.56, 207P 904
+-0.0487659849094172,0.0487659849094176,0.,0.,0.; 207P 905
+126,8,2,0,1,0,0,-3.14159265358979,-3.14159265358979, 209P 906
+-3.14159265358979,-1.5707963267949,-1.5707963267949,0.,0., 209P 907
+1.5707963267949,1.5707963267949,3.14159265358979, 209P 908
+3.14159265358979,3.14159265358979,1.,0.707106781186548,1., 209P 909
+0.707106781186548,1.,0.707106781186548,1.,0.707106781186548,1., 209P 910
+3.78007285126126,2.29665853469879,1.6,3.78007285126126, 209P 911
+1.82815853469879,1.6,3.31157285126126,1.82815853469879,1.6, 209P 912
+2.84307285126126,1.82815853469879,1.6,2.84307285126126, 209P 913
+2.29665853469879,1.6,2.84307285126126,2.76515853469879,1.6, 209P 914
+3.31157285126126,2.76515853469879,1.6,3.78007285126126, 209P 915
+2.76515853469879,1.6,3.78007285126126,2.29665853469879,1.6, 209P 916
+-3.14159265358979,3.14159265358979,0.,0.,0.; 209P 917
+126,8,2,0,1,0,0,-3.14159265358979,-3.14159265358979, 211P 918
+-3.14159265358979,-1.5707963267949,-1.5707963267949,0.,0., 211P 919
+1.5707963267949,1.5707963267949,3.14159265358979, 211P 920
+3.14159265358979,3.14159265358979,1.,0.707106781186548,1., 211P 921
+0.70710678118655,1.,0.70710678118655,1.,0.707106781186548,1., 211P 922
+3.76007285126126,2.29665853469879,1.85,3.76007285126126, 211P 923
+1.84815853469879,1.85,3.31157285126126,1.84815853469879,1.85, 211P 924
+2.86307285126126,1.84815853469879,1.85,2.86307285126126, 211P 925
+2.29665853469879,1.85,2.86307285126126,2.74515853469879,1.85, 211P 926
+3.31157285126126,2.74515853469879,1.85,3.76007285126126, 211P 927
+2.74515853469879,1.85,3.76007285126126,2.29665853469879,1.85, 211P 928
+-3.14159265358979,3.14159265358979,0.,0.,0.; 211P 929
+126,1,1,0,0,1,0,-0.0308443525054108,-0.0308443525054108, 213P 930
+0.030844352505411,0.030844352505411,1.,1.,3.76007285126126, 213P 931
+2.29665853469879,1.85,3.78007285126126,2.29665853469879,1.83, 213P 932
+-0.0308443525054108,0.030844352505411,0.,0.,0.; 213P 933
+126,8,2,0,1,0,0,-3.14159265358979,-3.14159265358979, 215P 934
+-3.14159265358979,-1.5707963267949,-1.5707963267949,0.,0., 215P 935
+1.5707963267949,1.5707963267949,3.14159265358979, 215P 936
+3.14159265358979,3.14159265358979,1.,0.707106781186548,1., 215P 937
+0.707106781186548,1.,0.707106781186548,1.,0.707106781186548,1., 215P 938
+3.78007285126126,2.29665853469879,1.83,3.78007285126126, 215P 939
+2.76515853469879,1.83,3.31157285126126,2.76515853469879,1.83, 215P 940
+2.84307285126126,2.76515853469879,1.83,2.84307285126126, 215P 941
+2.29665853469879,1.83,2.84307285126126,1.82815853469879,1.83, 215P 942
+3.31157285126126,1.82815853469879,1.83,3.78007285126126, 215P 943
+1.82815853469879,1.83,3.78007285126126,2.29665853469879,1.83, 215P 944
+-3.14159265358979,3.14159265358979,0.,0.,0.; 215P 945
+126,1,1,0,0,1,0,-0.490928495197439,-0.490928495197439,0.,0.,1., 217P 946
+1.,3.78007285126126,2.29665853469879,1.83,3.78007285126126, 217P 947
+2.29665853469879,1.6,-0.490928495197439,0.,0.,0.,0.; 217P 948
+128,1,8,1,2,0,1,0,0,1,0.397446828935682,0.397446828935682, 219P 949
+5.85807730379481,5.85807730379481,-3.14159265358979, 219P 950
+-3.14159265358979,-3.14159265358979,-1.5707963267949, 219P 951
+-1.5707963267949,0.,0.,1.5707963267949,1.5707963267949, 219P 952
+3.14159265358979,3.14159265358979,3.14159265358979,1.,1., 219P 953
+0.707106781186548,0.707106781186548,1.,1.,0.707106781186548, 219P 954
+0.707106781186548,1.,1.,0.707106781186548,0.707106781186548,1., 219P 955
+1.,0.707106781186548,0.707106781186548,1.,1.,3.8321921413194, 219P 956
+2.59636674472433,1.39783816997063,3.56737288080346, 219P 957
+2.44346909142827,1.39587949436865,3.86019137548281, 219P 958
+2.5478693221124,1.39804525995616,3.59537211496688, 219P 959
+2.39497166881635,1.39608658435418,3.85977719551174, 219P 960
+2.5478693221124,1.454043728283,3.5949579349958,2.39497166881635, 219P 961
+1.45208505268102,3.85936301554067,2.5478693221124, 219P 962
+1.51004219660983,3.59454375502473,2.39497166881635, 219P 963
+1.50808352100785,3.83136378137725,2.59636674472433, 219P 964
+1.5098351066243,3.56654452086131,2.44346909142827, 219P 965
+1.50787643102232,3.80336454721383,2.64486416733626, 219P 966
+1.50962801663876,3.53854528669789,2.4919665140402, 219P 967
+1.50766934103678,3.80377872718491,2.64486416733626, 219P 968
+1.45362954831193,3.53895946666897,2.4919665140402, 219P 969
+1.45167087270994,3.80419290715598,2.64486416733626, 219P 970
+1.39763107998509,3.53937364664004,2.4919665140402, 219P 971
+1.39567240438311,3.8321921413194,2.59636674472433, 219P 972
+1.39783816997063,3.56737288080346,2.44346909142827, 219P 973
+1.39587949436865,0.397446828935682,5.85807730379481, 219P 974
+-3.14159265358979,3.14159265358979; 219P 975
+128,1,8,1,2,0,1,0,0,1,0.54555737021635,0.54555737021635, 221P 976
+6.02397935204817,6.02397935204817,-3.14159265358979, 221P 977
+-3.14159265358979,-3.14159265358979,-1.5707963267949, 221P 978
+-1.5707963267949,0.,0.,1.5707963267949,1.5707963267949, 221P 979
+3.14159265358979,3.14159265358979,3.14159265358979,1.,1., 221P 980
+0.707106781186548,0.707106781186548,1.,1.,0.707106781186548, 221P 981
+0.707106781186548,1.,1.,0.707106781186548,0.707106781186548,1., 221P 982
+1.,0.707106781186548,0.707106781186548,1.,1.,3.83462425045512, 221P 983
+2.59221964956847,0.0978206008432522,3.56894217130649, 221P 984
+2.43882383407718,0.0958555435989334,3.86262348461854, 221P 985
+2.54372222695654,0.0980276908287887,3.59694140546991, 221P 986
+2.39032641146525,0.09606263358447,3.86220930464747, 221P 987
+2.54372222695654,0.154026159155624,3.59652722549884, 221P 988
+2.39032641146525,0.152061101911305,3.8617951246764, 221P 989
+2.54372222695654,0.210024627482459,3.59611304552776, 221P 990
+2.39032641146525,0.20805957023814,3.83379589051298, 221P 991
+2.59221964956847,0.209817537496922,3.56811381136434, 221P 992
+2.43882383407718,0.207852480252604,3.80579665634956, 221P 993
+2.6407170721804,0.209610447511386,3.54011457720093, 221P 994
+2.48732125668911,0.207645390267067,3.80621083632063, 221P 995
+2.6407170721804,0.153611979184551,3.540528757172, 221P 996
+2.48732125668911,0.151646921940232,3.80662501629171, 221P 997
+2.6407170721804,0.0976135108577156,3.54094293714307, 221P 998
+2.48732125668911,0.0956484536133969,3.83462425045512, 221P 999
+2.59221964956847,0.0978206008432522,3.56894217130649, 221P 1000
+2.43882383407718,0.0958555435989334,0.54555737021635, 221P 1001
+6.02397935204817,-3.14159265358979,3.14159265358979; 221P 1002
+128,1,8,1,2,0,1,0,0,1,0.512211405861094,0.512211405861094, 223P 1003
+5.97186594291983,5.97186594291983,-3.14159265358979, 223P 1004
+-3.14159265358979,-3.14159265358979,-1.5707963267949, 223P 1005
+-1.5707963267949,0.,0.,1.5707963267949,1.5707963267949, 223P 1006
+3.14159265358979,3.14159265358979,3.14159265358979,1.,1., 223P 1007
+0.707106781186548,0.707106781186548,1.,1.,0.707106781186548, 223P 1008
+0.707106781186548,1.,1.,0.707106781186548,0.707106781186548,1., 223P 1009
+1.,0.707106781186548,0.707106781186548,1.,1.,2.79146140774545, 223P 1010
+2.59717164483321,1.50233503315821,3.05623403827828, 223P 1011
+2.44430131779556,1.50419642686078,2.76346209964371, 223P 1012
+2.54867422222128,1.50213819356919,3.02823473017654, 223P 1013
+2.39580389518364,1.50399958727177,2.76385577882175, 223P 1014
+2.54867422222128,1.44613957736571,3.02862840935457, 223P 1015
+2.39580389518364,1.44800097106828,2.76424945799978, 223P 1016
+2.54867422222128,1.39014096116223,3.02902208853261, 223P 1017
+2.39580389518364,1.3920023548648,2.79224876610152, 223P 1018
+2.59717164483321,1.39033780075124,3.05702139663435, 223P 1019
+2.44430131779556,1.39219919445382,2.82024807420326, 223P 1020
+2.64566906744514,1.39053464034026,3.08502070473609, 223P 1021
+2.49279874040749,1.39239603404284,2.81985439502523, 223P 1022
+2.64566906744514,1.44653325654374,3.08462702555806, 223P 1023
+2.49279874040749,1.44839465024632,2.81946071584719, 223P 1024
+2.64566906744514,1.50253187274722,3.08423334638002, 223P 1025
+2.49279874040749,1.5043932664498,2.79146140774545, 223P 1026
+2.59717164483321,1.50233503315821,3.05623403827828, 223P 1027
+2.44430131779556,1.50419642686078,0.512211405861094, 223P 1028
+5.97186594291983,-3.14159265358979,3.14159265358979; 223P 1029
+128,1,8,1,2,0,1,0,0,1,0.370284408842375,0.370284408842375, 225P 1030
+5.84680636628352,5.84680636628352,-3.14159265358979, 225P 1031
+-3.14159265358979,-3.14159265358979,-1.5707963267949, 225P 1032
+-1.5707963267949,0.,0.,1.5707963267949,1.5707963267949, 225P 1033
+3.14159265358979,3.14159265358979,3.14159265358979,1.,1., 225P 1034
+0.707106781186548,0.707106781186548,1.,1.,0.707106781186548, 225P 1035
+0.707106781186548,1.,1.,0.707106781186548,0.707106781186548,1., 225P 1036
+1.,0.707106781186548,0.707106781186548,1.,1.,2.79371746519538, 225P 1037
+2.60114560074973,0.202318768959308,3.0593081019289, 225P 1038
+2.44780298594138,0.204185913375572,2.76571815709364, 225P 1039
+2.5526481781378,0.20212192937029,3.03130879382716, 225P 1040
+2.39930556332945,0.203989073786555,2.76611183627167, 225P 1041
+2.5526481781378,0.146123313166809,3.03170247300519, 225P 1042
+2.39930556332945,0.147990457583074,2.76650551544971, 225P 1043
+2.5526481781378,0.090124696963328,3.03209615218323, 225P 1044
+2.39930556332945,0.0919918413795927,2.79450482355145, 225P 1045
+2.60114560074973,0.0903215365523452,3.06009546028497, 225P 1046
+2.44780298594138,0.0921886809686099,2.82250413165319, 225P 1047
+2.64964302336166,0.0905183761413624,3.08809476838671, 225P 1048
+2.49630040855331,0.0923855205576271,2.82211045247515, 225P 1049
+2.64964302336166,0.146516992344844,3.08770108920867, 225P 1050
+2.49630040855331,0.148384136761108,2.82171677329712, 225P 1051
+2.64964302336166,0.202515608548325,3.08730741003064, 225P 1052
+2.49630040855331,0.204382752964589,2.79371746519538, 225P 1053
+2.60114560074973,0.202318768959308,3.0593081019289, 225P 1054
+2.44780298594138,0.204185913375572,0.370284408842375, 225P 1055
+5.84680636628352,-3.14159265358979,3.14159265358979; 225P 1056
+128,1,8,1,2,0,1,0,0,1,-7.15819491698382D-15, 227P 1057
+-7.15819491698382D-15,6.08511587489491,6.08511587489491, 227P 1058
+-3.14159265358979,-3.14159265358979,-3.14159265358979, 227P 1059
+-1.5707963267949,-1.5707963267949,0.,0.,1.5707963267949, 227P 1060
+1.5707963267949,3.14159265358979,3.14159265358979, 227P 1061
+3.14159265358979,1.,1.,0.707106781186548,0.707106781186548,1., 227P 1062
+1.,0.707106781186548,0.707106781186548,1.,1.,0.707106781186548, 227P 1063
+0.707106781186548,1.,1.,0.707106781186548,0.707106781186548,1., 227P 1064
+1.,3.26192525404851,1.69665853469879,1.45,3.26192525404851, 227P 1065
+2.00091432844354,1.45,3.26192525404851,1.69665853469879,1.5, 227P 1066
+3.26192525404851,2.00091432844354,1.5,3.31192525404851, 227P 1067
+1.69665853469879,1.5,3.31192525404851,2.00091432844354,1.5, 227P 1068
+3.36192525404851,1.69665853469879,1.5,3.36192525404851, 227P 1069
+2.00091432844354,1.5,3.36192525404851,1.69665853469879,1.45, 227P 1070
+3.36192525404851,2.00091432844354,1.45,3.36192525404851, 227P 1071
+1.69665853469879,1.4,3.36192525404851,2.00091432844354,1.4, 227P 1072
+3.31192525404851,1.69665853469879,1.4,3.31192525404851, 227P 1073
+2.00091432844354,1.4,3.26192525404851,1.69665853469879,1.4, 227P 1074
+3.26192525404851,2.00091432844354,1.4,3.26192525404851, 227P 1075
+1.69665853469879,1.45,3.26192525404851,2.00091432844354,1.45, 227P 1076
+-7.15819491698382D-15,6.08511587489491,-3.14159265358979, 227P 1077
+3.14159265358979; 227P 1078
+128,1,8,1,2,0,1,0,0,1,-7.15776721814433D-15, 229P 1079
+-7.15776721814433D-15,6.08511587489491,6.08511587489491, 229P 1080
+-3.14159265358979,-3.14159265358979,-3.14159265358979, 229P 1081
+-1.5707963267949,-1.5707963267949,0.,0.,1.5707963267949, 229P 1082
+1.5707963267949,3.14159265358979,3.14159265358979, 229P 1083
+3.14159265358979,1.,1.,0.707106781186548,0.707106781186548,1., 229P 1084
+1.,0.707106781186548,0.707106781186548,1.,1.,0.707106781186548, 229P 1085
+0.707106781186548,1.,1.,0.707106781186548,0.707106781186548,1., 229P 1086
+1.,3.26192525404851,1.69665853469879,0.15,3.26192525404851, 229P 1087
+2.00091432844354,0.15,3.26192525404851,1.69665853469879,0.2, 229P 1088
+3.26192525404851,2.00091432844354,0.2,3.31192525404851, 229P 1089
+1.69665853469879,0.2,3.31192525404851,2.00091432844354,0.2, 229P 1090
+3.36192525404851,1.69665853469879,0.2,3.36192525404851, 229P 1091
+2.00091432844354,0.2,3.36192525404851,1.69665853469879,0.15, 229P 1092
+3.36192525404851,2.00091432844354,0.15,3.36192525404851, 229P 1093
+1.69665853469879,0.0999999999999996,3.36192525404851, 229P 1094
+2.00091432844354,0.0999999999999996,3.31192525404851, 229P 1095
+1.69665853469879,0.0999999999999996,3.31192525404851, 229P 1096
+2.00091432844354,0.0999999999999996,3.26192525404851, 229P 1097
+1.69665853469879,0.0999999999999996,3.26192525404851, 229P 1098
+2.00091432844354,0.0999999999999996,3.26192525404851, 229P 1099
+1.69665853469879,0.15,3.26192525404851,2.00091432844354,0.15, 229P 1100
+-7.15776721814433D-15,6.08511587489491,-3.14159265358979, 229P 1101
+3.14159265358979; 229P 1102
+128,1,8,1,2,0,1,0,0,1,0.,0.,2.36367821873044,2.36367821873044, 231P 1103
+-3.14159265358979,-3.14159265358979,-3.14159265358979, 231P 1104
+-1.5707963267949,-1.5707963267949,0.,0.,1.5707963267949, 231P 1105
+1.5707963267949,3.14159265358979,3.14159265358979, 231P 1106
+3.14159265358979,1.,1.,0.707106781186548,0.707106781186548,1., 231P 1107
+1.,0.707106781186548,0.707106781186548,1.,1.,0.707106781186548, 231P 1108
+0.707106781186548,1.,1.,0.707106781186548,0.707106781186548,1., 231P 1109
+1.,3.32657285126126,2.29665853469879,1.85,3.32657285126126, 231P 1110
+2.29665853469879,1.81454482671904,3.32657285126126, 231P 1111
+2.28165853469879,1.85,3.32657285126126,2.28165853469879, 231P 1112
+1.81454482671904,3.31157285126126,2.28165853469879,1.85, 231P 1113
+3.31157285126126,2.28165853469879,1.81454482671904, 231P 1114
+3.29657285126126,2.28165853469879,1.85,3.29657285126126, 231P 1115
+2.28165853469879,1.81454482671904,3.29657285126126, 231P 1116
+2.29665853469879,1.85,3.29657285126126,2.29665853469879, 231P 1117
+1.81454482671904,3.29657285126126,2.31165853469879,1.85, 231P 1118
+3.29657285126126,2.31165853469879,1.81454482671904, 231P 1119
+3.31157285126126,2.31165853469879,1.85,3.31157285126126, 231P 1120
+2.31165853469879,1.81454482671904,3.32657285126126, 231P 1121
+2.31165853469879,1.85,3.32657285126126,2.31165853469879, 231P 1122
+1.81454482671904,3.32657285126126,2.29665853469879,1.85, 231P 1123
+3.32657285126126,2.29665853469879,1.81454482671904,0., 231P 1124
+2.36367821873044,-3.14159265358979,3.14159265358979; 231P 1125
+128,1,8,1,2,0,1,0,0,1,-0.0487659849094175,-0.0487659849094175, 233P 1126
+0.0487659849094174,0.0487659849094174,-3.14159265358979, 233P 1127
+-3.14159265358979,-3.14159265358979,-1.5707963267949, 233P 1128
+-1.5707963267949,0.,0.,1.5707963267949,1.5707963267949, 233P 1129
+3.14159265358979,3.14159265358979,3.14159265358979,1.,1., 233P 1130
+0.707106781186548,0.707106781186548,1.,1.,0.707106781186548, 233P 1131
+0.707106781186548,1.,1.,0.707106781186548,0.707106781186548,1., 233P 1132
+1.,0.707106781186548,0.707106781186548,1.,1.,3.87157285126126, 233P 1133
+2.29665853469879,-8.46872878035922D-17,3.91157285126126, 233P 1134
+2.29665853469879,0.0400000000000001,3.87157285126126, 233P 1135
+1.73665853469879,-8.46872878035922D-17,3.91157285126126, 233P 1136
+1.69665853469879,0.0400000000000001,3.31157285126126, 233P 1137
+1.73665853469879,-8.46872878035922D-17,3.31157285126126, 233P 1138
+1.69665853469879,0.0400000000000001,2.75157285126126, 233P 1139
+1.73665853469879,-8.46872878035922D-17,2.71157285126126, 233P 1140
+1.69665853469879,0.0400000000000001,2.75157285126126, 233P 1141
+2.29665853469879,-8.46872878035922D-17,2.71157285126126, 233P 1142
+2.29665853469879,0.0400000000000001,2.75157285126126, 233P 1143
+2.85665853469879,-8.46872878035922D-17,2.71157285126126, 233P 1144
+2.89665853469879,0.0400000000000001,3.31157285126126, 233P 1145
+2.85665853469879,-8.46872878035922D-17,3.31157285126126, 233P 1146
+2.89665853469879,0.0400000000000001,3.87157285126126, 233P 1147
+2.85665853469879,-8.46872878035922D-17,3.91157285126126, 233P 1148
+2.89665853469879,0.0400000000000001,3.87157285126126, 233P 1149
+2.29665853469879,-8.46872878035922D-17,3.91157285126126, 233P 1150
+2.29665853469879,0.0400000000000001,-0.0487659849094175, 233P 1151
+0.0487659849094174,-3.14159265358979,3.14159265358979; 233P 1152
+128,1,8,1,2,0,1,0,0,1,0.0666666666666667,0.0666666666666667,2.6, 235P 1153
+2.6,-3.14159265358979,-3.14159265358979,-3.14159265358979, 235P 1154
+-1.5707963267949,-1.5707963267949,0.,0.,1.5707963267949, 235P 1155
+1.5707963267949,3.14159265358979,3.14159265358979, 235P 1156
+3.14159265358979,1.,1.,0.707106781186548,0.707106781186548,1., 235P 1157
+1.,0.707106781186548,0.707106781186548,1.,1.,0.707106781186548, 235P 1158
+0.707106781186548,1.,1.,0.707106781186548,0.707106781186548,1., 235P 1159
+1.,3.91157285126126,2.29665853469879,1.56,3.91157285126126, 235P 1160
+2.29665853469879,0.04,3.91157285126126,2.89665853469879,1.56, 235P 1161
+3.91157285126126,2.89665853469879,0.04,3.31157285126126, 235P 1162
+2.89665853469879,1.56,3.31157285126126,2.89665853469879,0.04, 235P 1163
+2.71157285126126,2.89665853469879,1.56,2.71157285126126, 235P 1164
+2.89665853469879,0.04,2.71157285126126,2.29665853469879,1.56, 235P 1165
+2.71157285126126,2.29665853469879,0.04,2.71157285126126, 235P 1166
+1.69665853469879,1.56,2.71157285126126,1.69665853469879,0.04, 235P 1167
+3.31157285126126,1.69665853469879,1.56,3.31157285126126, 235P 1168
+1.69665853469879,0.04,3.91157285126126,1.69665853469879,1.56, 235P 1169
+3.91157285126126,1.69665853469879,0.04,3.91157285126126, 235P 1170
+2.29665853469879,1.56,3.91157285126126,2.29665853469879,0.04, 235P 1171
+0.0666666666666667,2.6,-3.14159265358979,3.14159265358979; 235P 1172
+128,1,1,1,1,0,0,1,0,0,-1.4234,-1.4234,1.4234,1.4234,-1.4234, 237P 1173
+-1.4234,1.4234,1.4234,1.,1.,1.,1.,3.87196655204866, 237P 1174
+1.73626483391139,0.,2.75117915047386,1.73626483391139,0., 237P 1175
+3.87196655204866,2.85705223548619,0.,2.75117915047386, 237P 1176
+2.85705223548619,0.,-1.4234,1.4234,-1.4234,1.4234; 237P 1177
+128,1,8,1,2,0,1,0,0,1,-1.15470053837925,-1.15470053837925, 239P 1178
+1.03923048454133,1.03923048454133,-3.14159265358979, 239P 1179
+-3.14159265358979,-3.14159265358979,-1.5707963267949, 239P 1180
+-1.5707963267949,0.,0.,1.5707963267949,1.5707963267949, 239P 1181
+3.14159265358979,3.14159265358979,3.14159265358979,1.,1., 239P 1182
+0.707106781186548,0.707106781186548,1.,1.,0.707106781186548, 239P 1183
+0.707106781186548,1.,1.,0.707106781186548,0.707106781186548,1., 239P 1184
+1.,0.707106781186548,0.707106781186548,1.,1.,3.32657285126126, 239P 1185
+2.29665853469879,1.81454482671904,3.61157285126126, 239P 1186
+2.29665853469879,1.65,3.32657285126126,2.28165853469879, 239P 1187
+1.81454482671904,3.61157285126126,1.99665853469879,1.65, 239P 1188
+3.31157285126126,2.28165853469879,1.81454482671904, 239P 1189
+3.31157285126126,1.99665853469879,1.65,3.29657285126126, 239P 1190
+2.28165853469879,1.81454482671904,3.01157285126126, 239P 1191
+1.99665853469879,1.65,3.29657285126126,2.29665853469879, 239P 1192
+1.81454482671904,3.01157285126126,2.29665853469879,1.65, 239P 1193
+3.29657285126126,2.31165853469879,1.81454482671904, 239P 1194
+3.01157285126126,2.59665853469879,1.65,3.31157285126126, 239P 1195
+2.31165853469879,1.81454482671904,3.31157285126126, 239P 1196
+2.59665853469879,1.65,3.32657285126126,2.31165853469879, 239P 1197
+1.81454482671904,3.61157285126126,2.59665853469879,1.65, 239P 1198
+3.32657285126126,2.29665853469879,1.81454482671904, 239P 1199
+3.61157285126126,2.29665853469879,1.65,-1.15470053837925, 239P 1200
+1.03923048454133,-3.14159265358979,3.14159265358979; 239P 1201
+128,1,8,1,2,0,1,0,0,1,-2.75,-2.75,2.75,2.75,-3.14159265358979, 241P 1202
+-3.14159265358979,-3.14159265358979,-1.5707963267949, 241P 1203
+-1.5707963267949,0.,0.,1.5707963267949,1.5707963267949, 241P 1204
+3.14159265358979,3.14159265358979,3.14159265358979,1.,1., 241P 1205
+0.707106781186548,0.707106781186548,1.,1.,0.707106781186548, 241P 1206
+0.707106781186548,1.,1.,0.707106781186548,0.707106781186548,1., 241P 1207
+1.,0.707106781186548,0.707106781186548,1.,1.,3.61157285126126, 241P 1208
+2.29665853469879,1.65,3.61157285126126,2.29665853469879,0., 241P 1209
+3.61157285126126,1.99665853469879,1.65,3.61157285126126, 241P 1210
+1.99665853469879,0.,3.31157285126126,1.99665853469879,1.65, 241P 1211
+3.31157285126126,1.99665853469879,0.,3.01157285126126, 241P 1212
+1.99665853469879,1.65,3.01157285126126,1.99665853469879,0., 241P 1213
+3.01157285126126,2.29665853469879,1.65,3.01157285126126, 241P 1214
+2.29665853469879,0.,3.01157285126126,2.59665853469879,1.65, 241P 1215
+3.01157285126126,2.59665853469879,0.,3.31157285126126, 241P 1216
+2.59665853469879,1.65,3.31157285126126,2.59665853469879,0., 241P 1217
+3.61157285126126,2.59665853469879,1.65,3.61157285126126, 241P 1218
+2.59665853469879,0.,3.61157285126126,2.29665853469879,1.65, 241P 1219
+3.61157285126126,2.29665853469879,0.,-2.75,2.75, 241P 1220
+-3.14159265358979,3.14159265358979; 241P 1221
+128,1,8,1,2,0,1,0,0,1,-0.0487659849094176,-0.0487659849094176, 243P 1222
+0.0487659849094172,0.0487659849094172,-3.14159265358979, 243P 1223
+-3.14159265358979,-3.14159265358979,-1.5707963267949, 243P 1224
+-1.5707963267949,0.,0.,1.5707963267949,1.5707963267949, 243P 1225
+3.14159265358979,3.14159265358979,3.14159265358979,1.,1., 243P 1226
+0.707106781186548,0.707106781186548,1.,1.,0.707106781186548, 243P 1227
+0.707106781186548,1.,1.,0.707106781186548,0.707106781186548,1., 243P 1228
+1.,0.707106781186548,0.707106781186548,1.,1.,3.87157285126126, 243P 1229
+2.29665853469879,1.6,3.91157285126126,2.29665853469879,1.56, 243P 1230
+3.87157285126126,2.85665853469879,1.6,3.91157285126126, 243P 1231
+2.89665853469879,1.56,3.31157285126126,2.85665853469879,1.6, 243P 1232
+3.31157285126126,2.89665853469879,1.56,2.75157285126126, 243P 1233
+2.85665853469879,1.6,2.71157285126126,2.89665853469879,1.56, 243P 1234
+2.75157285126126,2.29665853469879,1.6,2.71157285126126, 243P 1235
+2.29665853469879,1.56,2.75157285126126,1.73665853469879,1.6, 243P 1236
+2.71157285126126,1.69665853469879,1.56,3.31157285126126, 243P 1237
+1.73665853469879,1.6,3.31157285126126,1.69665853469879,1.56, 243P 1238
+3.87157285126126,1.73665853469879,1.6,3.91157285126126, 243P 1239
+1.69665853469879,1.56,3.87157285126126,2.29665853469879,1.6, 243P 1240
+3.91157285126126,2.29665853469879,1.56,-0.0487659849094176, 243P 1241
+0.0487659849094172,-3.14159265358979,3.14159265358979; 243P 1242
+128,1,1,1,1,0,0,1,0,0,-1.4234,-1.4234,1.4234,1.4234,-1.4234, 245P 1243
+-1.4234,1.4234,1.4234,1.,1.,1.,1.,2.75117915047386, 245P 1244
+1.73626483391139,1.6,3.87196655204866,1.73626483391139,1.6, 245P 1245
+2.75117915047386,2.85705223548619,1.6,3.87196655204866, 245P 1246
+2.85705223548619,1.6,-1.4234,1.4234,-1.4234,1.4234; 245P 1247
+128,1,8,1,2,0,1,0,0,1,-0.030844352505411,-0.030844352505411, 247P 1248
+0.0308443525054108,0.0308443525054108,-3.14159265358979, 247P 1249
+-3.14159265358979,-3.14159265358979,-1.5707963267949, 247P 1250
+-1.5707963267949,0.,0.,1.5707963267949,1.5707963267949, 247P 1251
+3.14159265358979,3.14159265358979,3.14159265358979,1.,1., 247P 1252
+0.707106781186548,0.707106781186548,1.,1.,0.707106781186548, 247P 1253
+0.707106781186548,1.,1.,0.707106781186548,0.707106781186548,1., 247P 1254
+1.,0.707106781186548,0.707106781186548,1.,1.,3.76007285126126, 247P 1255
+2.29665853469879,1.85,3.78007285126126,2.29665853469879,1.83, 247P 1256
+3.76007285126126,2.74515853469879,1.85,3.78007285126126, 247P 1257
+2.76515853469879,1.83,3.31157285126126,2.74515853469879,1.85, 247P 1258
+3.31157285126126,2.76515853469879,1.83,2.86307285126126, 247P 1259
+2.74515853469879,1.85,2.84307285126126,2.76515853469879,1.83, 247P 1260
+2.86307285126126,2.29665853469879,1.85,2.84307285126126, 247P 1261
+2.29665853469879,1.83,2.86307285126126,1.84815853469879,1.85, 247P 1262
+2.84307285126126,1.82815853469879,1.83,3.31157285126126, 247P 1263
+1.84815853469879,1.85,3.31157285126126,1.82815853469879,1.83, 247P 1264
+3.76007285126126,1.84815853469879,1.85,3.78007285126126, 247P 1265
+1.82815853469879,1.83,3.76007285126126,2.29665853469879,1.85, 247P 1266
+3.78007285126126,2.29665853469879,1.83,-0.030844352505411, 247P 1267
+0.0308443525054108,-3.14159265358979,3.14159265358979; 247P 1268
+128,1,8,1,2,0,1,0,0,1,0.,0.,0.490928495197439,0.490928495197439, 249P 1269
+-3.14159265358979,-3.14159265358979,-3.14159265358979, 249P 1270
+-1.5707963267949,-1.5707963267949,0.,0.,1.5707963267949, 249P 1271
+1.5707963267949,3.14159265358979,3.14159265358979, 249P 1272
+3.14159265358979,1.,1.,0.707106781186548,0.707106781186548,1., 249P 1273
+1.,0.707106781186548,0.707106781186548,1.,1.,0.707106781186548, 249P 1274
+0.707106781186548,1.,1.,0.707106781186548,0.707106781186548,1., 249P 1275
+1.,3.78007285126126,2.29665853469879,1.83,3.78007285126126, 249P 1276
+2.29665853469879,1.6,3.78007285126126,2.76515853469879,1.83, 249P 1277
+3.78007285126126,2.76515853469879,1.6,3.31157285126126, 249P 1278
+2.76515853469879,1.83,3.31157285126126,2.76515853469879,1.6, 249P 1279
+2.84307285126126,2.76515853469879,1.83,2.84307285126126, 249P 1280
+2.76515853469879,1.6,2.84307285126126,2.29665853469879,1.83, 249P 1281
+2.84307285126126,2.29665853469879,1.6,2.84307285126126, 249P 1282
+1.82815853469879,1.83,2.84307285126126,1.82815853469879,1.6, 249P 1283
+3.31157285126126,1.82815853469879,1.83,3.31157285126126, 249P 1284
+1.82815853469879,1.6,3.78007285126126,1.82815853469879,1.83, 249P 1285
+3.78007285126126,1.82815853469879,1.6,3.78007285126126, 249P 1286
+2.29665853469879,1.83,3.78007285126126,2.29665853469879,1.6,0., 249P 1287
+0.490928495197439,-3.14159265358979,3.14159265358979; 249P 1288
+128,1,1,1,1,0,0,1,0,0,-1.14019,-1.14019,1.14019,1.14019, 251P 1289
+-1.14019,-1.14019,1.14019,1.14019,1.,1.,1.,1.,2.86267915047386, 251P 1290
+1.84776483391139,1.85,3.76046655204866,1.84776483391139,1.85, 251P 1291
+2.86267915047386,2.74555223548619,1.85,3.76046655204866, 251P 1292
+2.74555223548619,1.85,-1.14019,1.14019,-1.14019,1.14019; 251P 1293
+502,39,3.85714908296617,2.54635149695176,1.45381719014639, 253P 1294
+3.831565047446,2.59600468200483,1.39783353181301, 253P 1295
+3.57175878402289,2.44600136309359,1.39591193370713, 253P 1296
+3.53917978480351,2.49209416042628,1.45187960214126, 253P 1297
+3.85914179584646,2.54195070931072,0.15379637112426, 253P 1298
+3.83394690232816,2.59182857174854,0.097815590991447, 253P 1299
+3.57411866922795,2.44181256829138,0.0958938303918303, 253P 1300
+3.54233152907069,2.48836255817155,0.151867355631928, 253P 1301
+2.82245433305252,2.64416835491297,1.44635468642023, 253P 1302
+2.79205576601067,2.59682848344905,1.50233921159134, 253P 1303
+3.0518618081059,2.44682568844139,1.5041656893873, 253P 1304
+3.02846279036647,2.39589911823268,1.4481966548418, 253P 1305
+2.82512800129289,2.64790119716913,0.146341358091604, 253P 1306
+2.79435691776122,2.60077640351561,0.202323264412545, 253P 1307
+3.0541792832321,2.45076418396974,0.204149856964437, 253P 1308
+3.03003274874208,2.40026920342306,0.148175567257292, 253P 1309
+3.31157285126126,1.69665853469879,1.49999875810733, 253P 1310
+3.31157285126126,1.69665853469879,1.40000124189267, 253P 1311
+3.26192525404851,1.69871613271428,1.45,3.26192525404851, 253P 1312
+2.00079519447057,1.45,3.36192525404851,2.00091432844354,1.45, 253P 1313
+3.31157285126126,1.69665853469879,0.199998758107332, 253P 1314
+3.31157285126126,1.69665853469879,0.100001241892668, 253P 1315
+3.26192525404851,1.69871613271428,0.15,3.26192525404851, 253P 1316
+2.00079519447057,0.15,3.36192525404851,2.00091432844354,0.15, 253P 1317
+3.32657285126126,2.29665853469879,1.85,3.32657285126126, 253P 1318
+2.29665853469879,1.81454482671904,3.87157285126126, 253P 1319
+2.29665853469879,0.,3.91157285126126,2.29665853469879,0.04, 253P 1320
+3.91157285126126,2.29665853469879,1.56,3.01157285126126, 253P 1321
+2.29665853469879,0.,3.61157285126126,2.29665853469879,0., 253P 1322
+3.01157285126126,2.29665853469879,1.65,3.61157285126126, 253P 1323
+2.29665853469879,1.65,3.87157285126126,2.29665853469879,1.6, 253P 1324
+3.78007285126126,2.29665853469879,1.6,3.76007285126126, 253P 1325
+2.29665853469879,1.85,3.78007285126126,2.29665853469879,1.83; 253P 1326
+504,53,113,253,1,253,2,115,253,2,253,1,117,253,2,253,3,119,253, 255P 1327
+4,253,3,121,253,3,253,4,123,253,5,253,6,125,253,6,253,5,127,253, 255P 1328
+6,253,7,129,253,8,253,7,131,253,7,253,8,133,253,9,253,10,135, 255P 1329
+253,10,253,9,137,253,10,253,11,139,253,12,253,11,141,253,11,253, 255P 1330
+12,143,253,13,253,14,145,253,14,253,13,147,253,14,253,15,149, 255P 1331
+253,16,253,15,151,253,15,253,16,153,253,17,253,18,155,253,19, 255P 1332
+253,17,157,253,19,253,20,159,253,21,253,20,161,253,20,253,21, 255P 1333
+163,253,18,253,19,165,253,22,253,23,167,253,24,253,22,169,253, 255P 1334
+24,253,25,171,253,26,253,25,173,253,25,253,26,175,253,23,253,24, 255P 1335
+177,253,27,253,27,179,253,27,253,28,181,253,28,253,28,183,253, 255P 1336
+29,253,29,185,253,29,253,30,187,253,30,253,30,189,253,31,253,31, 255P 1337
+191,253,31,253,30,193,253,32,253,33,195,253,33,253,32,197,253, 255P 1338
+34,253,35,199,253,35,253,28,201,253,35,253,34,203,253,33,253,35, 255P 1339
+205,253,36,253,36,207,253,36,253,31,209,253,37,253,37,211,253, 255P 1340
+38,253,38,213,253,38,253,39,215,253,39,253,39,217,253,39,253,37; 255P 1341
+406,1,6HSolid1; 257P 1342
+314,74.9019607843137,74.9019607843137,74.9019607843137,; 259P 1343
+S 1G 3D 260P 1343 T 1
diff --git a/2021-dean-protocol/laser-alignment-tool/laserfocus_draft3.ipt b/2021-dean-protocol/laser-alignment-tool/laserfocus_draft3.ipt
new file mode 100644
index 0000000..d545bf4
Binary files /dev/null and b/2021-dean-protocol/laser-alignment-tool/laserfocus_draft3.ipt differ
diff --git a/2021-dean-protocol/laser-alignment-tool/laserfocus_draft3.stl b/2021-dean-protocol/laser-alignment-tool/laserfocus_draft3.stl
new file mode 100644
index 0000000..d8c422d
Binary files /dev/null and b/2021-dean-protocol/laser-alignment-tool/laserfocus_draft3.stl differ
diff --git a/2021-dean-protocol/laser-alignment-tool/laserfocus_draft3.stp b/2021-dean-protocol/laser-alignment-tool/laserfocus_draft3.stp
new file mode 100644
index 0000000..ea658cf
--- /dev/null
+++ b/2021-dean-protocol/laser-alignment-tool/laserfocus_draft3.stp
@@ -0,0 +1,1253 @@
+ISO-10303-21;
+HEADER;
+/* Generated by software containing ST-Developer
+ * from STEP Tools, Inc. (www.steptools.com)
+ */
+
+FILE_DESCRIPTION(
+/* description */ (''),
+/* implementation_level */ '2;1');
+
+FILE_NAME(
+/* name */ 'C:\\Users\\Saumya\\Desktop\\laser\\laserfocus_draft3.stp',
+/* time_stamp */ '2019-07-01T11:18:38-05:00',
+/* author */ ('Saumya'),
+/* organization */ (''),
+/* preprocessor_version */ 'ST-DEVELOPER v17',
+/* originating_system */ 'Autodesk Inventor 2019',
+/* authorisation */ '');
+
+FILE_SCHEMA (('AUTOMOTIVE_DESIGN { 1 0 10303 214 3 1 1 }'));
+ENDSEC;
+
+DATA;
+#10=MECHANICAL_DESIGN_GEOMETRIC_PRESENTATION_REPRESENTATION('',(#16),#1064);
+#11=GEOMETRICALLY_BOUNDED_WIREFRAME_SHAPE_REPRESENTATION('',(#12),#1063);
+#12=GEOMETRIC_CURVE_SET('Sketch12',(#53,#54));
+#13=SHAPE_REPRESENTATION_RELATIONSHIP('SRR','None',#1074,#15);
+#14=SHAPE_REPRESENTATION_RELATIONSHIP('SRR','None',#1074,#11);
+#15=ADVANCED_BREP_SHAPE_REPRESENTATION('',(#17),#1063);
+#16=STYLED_ITEM('',(#1083),#17);
+#17=MANIFOLD_SOLID_BREP('Solid1',#383);
+#18=PLANE('',#417);
+#19=PLANE('',#426);
+#20=PLANE('',#432);
+#21=FACE_BOUND('',#81,.T.);
+#22=FACE_BOUND('',#82,.T.);
+#23=FACE_BOUND('',#83,.T.);
+#24=FACE_BOUND('',#84,.T.);
+#25=FACE_BOUND('',#85,.T.);
+#26=FACE_BOUND('',#86,.T.);
+#27=FACE_BOUND('',#88,.T.);
+#28=FACE_BOUND('',#91,.T.);
+#29=FACE_BOUND('',#92,.T.);
+#30=FACE_BOUND('',#93,.T.);
+#31=FACE_BOUND('',#94,.T.);
+#32=FACE_BOUND('',#95,.T.);
+#33=FACE_BOUND('',#96,.T.);
+#34=FACE_BOUND('',#99,.T.);
+#35=FACE_BOUND('',#103,.T.);
+#36=CONICAL_SURFACE('',#412,0.58,0.78539816339745);
+#37=CONICAL_SURFACE('',#420,0.15,1.0471975511966);
+#38=CONICAL_SURFACE('',#424,0.58,0.78539816339745);
+#39=CONICAL_SURFACE('',#428,0.4585,0.785398163397448);
+#40=CIRCLE('',#410,0.015);
+#41=CIRCLE('',#411,0.015);
+#42=CIRCLE('',#413,0.56);
+#43=CIRCLE('',#414,0.6);
+#44=CIRCLE('',#416,0.6);
+#45=CIRCLE('',#418,0.3);
+#46=CIRCLE('',#419,0.3);
+#47=CIRCLE('',#421,0.3);
+#48=CIRCLE('',#422,0.3);
+#49=CIRCLE('',#425,0.56);
+#50=CIRCLE('',#427,0.4685);
+#51=CIRCLE('',#429,0.4485);
+#52=CIRCLE('',#430,0.4685);
+#53=CIRCLE('',#433,0.056);
+#54=CIRCLE('',#434,0.056);
+#55=FACE_OUTER_BOUND('',#72,.T.);
+#56=FACE_OUTER_BOUND('',#73,.T.);
+#57=FACE_OUTER_BOUND('',#74,.T.);
+#58=FACE_OUTER_BOUND('',#75,.T.);
+#59=FACE_OUTER_BOUND('',#76,.T.);
+#60=FACE_OUTER_BOUND('',#77,.T.);
+#61=FACE_OUTER_BOUND('',#78,.T.);
+#62=FACE_OUTER_BOUND('',#79,.T.);
+#63=FACE_OUTER_BOUND('',#80,.T.);
+#64=FACE_OUTER_BOUND('',#87,.T.);
+#65=FACE_OUTER_BOUND('',#89,.T.);
+#66=FACE_OUTER_BOUND('',#90,.T.);
+#67=FACE_OUTER_BOUND('',#97,.T.);
+#68=FACE_OUTER_BOUND('',#98,.T.);
+#69=FACE_OUTER_BOUND('',#100,.T.);
+#70=FACE_OUTER_BOUND('',#101,.T.);
+#71=FACE_OUTER_BOUND('',#102,.T.);
+#72=EDGE_LOOP('',(#250,#251,#252,#253,#254,#255));
+#73=EDGE_LOOP('',(#256,#257,#258,#259,#260,#261));
+#74=EDGE_LOOP('',(#262,#263,#264,#265,#266,#267));
+#75=EDGE_LOOP('',(#268,#269,#270,#271,#272,#273));
+#76=EDGE_LOOP('',(#274,#275,#276,#277,#278,#279,#280));
+#77=EDGE_LOOP('',(#281,#282,#283,#284,#285,#286,#287));
+#78=EDGE_LOOP('',(#288,#289,#290,#291));
+#79=EDGE_LOOP('',(#292,#293,#294,#295));
+#80=EDGE_LOOP('',(#296,#297,#298,#299));
+#81=EDGE_LOOP('',(#300,#301));
+#82=EDGE_LOOP('',(#302,#303));
+#83=EDGE_LOOP('',(#304,#305));
+#84=EDGE_LOOP('',(#306,#307));
+#85=EDGE_LOOP('',(#308,#309,#310));
+#86=EDGE_LOOP('',(#311,#312,#313));
+#87=EDGE_LOOP('',(#314));
+#88=EDGE_LOOP('',(#315,#316));
+#89=EDGE_LOOP('',(#317,#318,#319,#320,#321));
+#90=EDGE_LOOP('',(#322,#323,#324,#325,#326,#327));
+#91=EDGE_LOOP('',(#328,#329));
+#92=EDGE_LOOP('',(#330,#331));
+#93=EDGE_LOOP('',(#332,#333));
+#94=EDGE_LOOP('',(#334,#335));
+#95=EDGE_LOOP('',(#336,#337));
+#96=EDGE_LOOP('',(#338,#339));
+#97=EDGE_LOOP('',(#340,#341,#342,#343));
+#98=EDGE_LOOP('',(#344));
+#99=EDGE_LOOP('',(#345));
+#100=EDGE_LOOP('',(#346,#347,#348,#349));
+#101=EDGE_LOOP('',(#350,#351,#352,#353));
+#102=EDGE_LOOP('',(#354));
+#103=EDGE_LOOP('',(#355));
+#104=LINE('',#558,#118);
+#105=LINE('',#640,#119);
+#106=LINE('',#722,#120);
+#107=LINE('',#804,#121);
+#108=LINE('',#881,#122);
+#109=LINE('',#966,#123);
+#110=LINE('',#1018,#124);
+#111=LINE('',#1024,#125);
+#112=LINE('',#1029,#126);
+#113=LINE('',#1039,#127);
+#114=LINE('',#1042,#128);
+#115=LINE('',#1046,#129);
+#116=LINE('',#1054,#130);
+#117=LINE('',#1057,#131);
+#118=VECTOR('',#439,0.056);
+#119=VECTOR('',#442,0.056);
+#120=VECTOR('',#445,0.056);
+#121=VECTOR('',#448,0.056);
+#122=VECTOR('',#451,0.05);
+#123=VECTOR('',#454,0.05);
+#124=VECTOR('',#459,0.015);
+#125=VECTOR('',#466,0.58);
+#126=VECTOR('',#473,0.6);
+#127=VECTOR('',#484,0.15);
+#128=VECTOR('',#489,0.3);
+#129=VECTOR('',#494,0.58);
+#130=VECTOR('',#503,0.4585);
+#131=VECTOR('',#508,0.4685);
+#132=B_SPLINE_CURVE_WITH_KNOTS('',3,(#519,#520,#521,#522,#523,#524,#525,
+#526,#527,#528,#529,#530,#531,#532,#533,#534,#535,#536,#537,#538,#539,#540,
+#541,#542,#543,#544,#545,#546),.UNSPECIFIED.,.F.,.F.,(4,2,2,2,2,2,2,2,2,
+2,2,2,2,4),(0.,0.0536273852314883,0.107254770462977,0.160871199878581,0.214487629294185,
+0.268100271894924,0.321712914495662,0.375339740821894,0.428966567148127,
+0.482571952160097,0.536177337172067,0.589784393508081,0.643391449844096,
+0.643917130042126),.UNSPECIFIED.);
+#133=B_SPLINE_CURVE_WITH_KNOTS('',3,(#547,#548,#549,#550,#551,#552,#553,
+#554,#555,#556),.UNSPECIFIED.,.F.,.F.,(4,2,2,2,4),(0.643917130042126,0.697000710523883,
+0.75060997120367,0.804216755458324,0.857823539712979),.UNSPECIFIED.);
+#134=B_SPLINE_CURVE_WITH_KNOTS('',3,(#560,#561,#562,#563,#564,#565,#566,
+#567,#568,#569,#570,#571,#572,#573,#574,#575,#576,#577,#578,#579,#580,#581,
+#582,#583,#584,#585),.UNSPECIFIED.,.F.,.F.,(4,2,2,2,2,2,2,2,2,2,2,2,4),
+(0.,0.0537420313365901,0.10748406267318,0.161193534112809,0.214903005552438,
+0.268627407867052,0.322351810181666,0.376095911917818,0.429840013653971,
+0.483544072374564,0.537248131095156,0.590956672643984,0.644139526564499),
+ .UNSPECIFIED.);
+#135=B_SPLINE_CURVE_WITH_KNOTS('',3,(#586,#587,#588,#589,#590,#591,#592,
+#593,#594,#595,#596,#597),.UNSPECIFIED.,.F.,.F.,(4,2,2,2,2,4),(0.644139526564499,
+0.644665214192811,0.698364459328045,0.752063704463278,0.805761567108939,
+0.859459429754599),.UNSPECIFIED.);
+#136=B_SPLINE_CURVE_WITH_KNOTS('',3,(#601,#602,#603,#604,#605,#606,#607,
+#608,#609,#610,#611,#612,#613,#614,#615,#616,#617,#618,#619,#620,#621,#622,
+#623,#624,#625,#626,#627,#628),.UNSPECIFIED.,.F.,.F.,(4,2,2,2,2,2,2,2,2,
+2,2,2,2,4),(0.,0.0536316426667544,0.107263285333509,0.160896434922574,0.21452958451164,
+0.268137847963155,0.32174611141467,0.375360628505026,0.428975145595383,
+0.482576311373687,0.536177477151991,0.589775277752289,0.643373078352587,
+0.64389878030563),.UNSPECIFIED.);
+#137=B_SPLINE_CURVE_WITH_KNOTS('',3,(#629,#630,#631,#632,#633,#634,#635,
+#636,#637,#638),.UNSPECIFIED.,.F.,.F.,(4,2,2,2,4),(0.64389878030563,0.697003925909609,
+0.75063477346663,0.804237730133452,0.857840686800274),.UNSPECIFIED.);
+#138=B_SPLINE_CURVE_WITH_KNOTS('',3,(#642,#643,#644,#645,#646,#647,#648,
+#649,#650,#651,#652,#653,#654,#655,#656,#657,#658,#659,#660,#661,#662,#663,
+#664,#665,#666,#667),.UNSPECIFIED.,.F.,.F.,(4,2,2,2,2,2,2,2,2,2,2,2,4),
+(0.,0.0537327750348297,0.107465550069659,0.161119478225755,0.21477340638185,
+0.268571733844888,0.322370061307926,0.376122865173412,0.429875669038899,
+0.483574385926714,0.53727310281453,0.59106305374187,0.644327229962018),
+ .UNSPECIFIED.);
+#139=B_SPLINE_CURVE_WITH_KNOTS('',3,(#668,#669,#670,#671,#672,#673,#674,
+#675,#676,#677,#678,#679),.UNSPECIFIED.,.F.,.F.,(4,2,2,2,2,4),(0.644327229962018,
+0.644853004669209,0.698505644328884,0.752158283988558,0.805844476018725,
+0.859530668048892),.UNSPECIFIED.);
+#140=B_SPLINE_CURVE_WITH_KNOTS('',3,(#683,#684,#685,#686,#687,#688,#689,
+#690,#691,#692,#693,#694),.UNSPECIFIED.,.F.,.F.,(4,2,2,2,2,4),(0.,0.0536068983360385,
+0.107213796672077,0.160822963808843,0.21443213094561,0.214931805992388),
+ .UNSPECIFIED.);
+#141=B_SPLINE_CURVE_WITH_KNOTS('',3,(#695,#696,#697,#698,#699,#700,#701,
+#702,#703,#704,#705,#706,#707,#708,#709,#710,#711,#712,#713,#714,#715,#716,
+#717,#718,#719,#720),.UNSPECIFIED.,.F.,.F.,(4,2,2,2,2,2,2,2,2,2,2,2,4),
+(0.214931805992388,0.268039755174466,0.321647379403322,0.375253295980632,
+0.428859212557942,0.482485398311679,0.536111584065416,0.589724735678272,
+0.643337887291128,0.696953672132254,0.75056945697338,0.804196025861176,
+0.857822594748972),.UNSPECIFIED.);
+#142=B_SPLINE_CURVE_WITH_KNOTS('',3,(#724,#725,#726,#727,#728,#729,#730,
+#731,#732,#733),.UNSPECIFIED.,.F.,.F.,(4,2,2,2,4),(0.,0.0536934230006689,
+0.107386846001338,0.161094073097757,0.214301619130191),.UNSPECIFIED.);
+#143=B_SPLINE_CURVE_WITH_KNOTS('',3,(#734,#735,#736,#737,#738,#739,#740,
+#741,#742,#743,#744,#745,#746,#747,#748,#749,#750,#751,#752,#753,#754,#755,
+#756,#757,#758,#759,#760,#761),.UNSPECIFIED.,.F.,.F.,(4,2,2,2,2,2,2,2,2,
+2,2,2,2,4),(0.214301619130191,0.214801300194177,0.268518436347836,0.322235572501495,
+0.375929910974964,0.429624249448432,0.483360070716362,0.537095891984292,
+0.590824465451825,0.644553038919358,0.698274626129645,0.751996213339931,
+0.805727196456036,0.859458179572142),.UNSPECIFIED.);
+#144=B_SPLINE_CURVE_WITH_KNOTS('',3,(#765,#766,#767,#768,#769,#770,#771,
+#772,#773,#774,#775,#776),.UNSPECIFIED.,.F.,.F.,(4,2,2,2,2,4),(0.,0.0536034508496916,
+0.107206901699383,0.160836274226494,0.214465646753606,0.214965337965003),
+ .UNSPECIFIED.);
+#145=B_SPLINE_CURVE_WITH_KNOTS('',3,(#777,#778,#779,#780,#781,#782,#783,
+#784,#785,#786,#787,#788,#789,#790,#791,#792,#793,#794,#795,#796,#797,#798,
+#799,#800,#801,#802),.UNSPECIFIED.,.F.,.F.,(4,2,2,2,2,2,2,2,2,2,2,2,4),
+(0.214965337965003,0.268064393779044,0.321663140804481,0.375264853860477,
+0.428866566916473,0.482490401930762,0.536114236945052,0.589713754779553,
+0.643313272614054,0.696946545154349,0.750579817694643,0.80420856415716,
+0.857837310619676),.UNSPECIFIED.);
+#146=B_SPLINE_CURVE_WITH_KNOTS('',3,(#806,#807,#808,#809,#810,#811,#812,
+#813,#814,#815),.UNSPECIFIED.,.F.,.F.,(4,2,2,2,4),(0.,0.0536756462842513,
+0.107351292568503,0.161019938737055,0.214188839292856),.UNSPECIFIED.);
+#147=B_SPLINE_CURVE_WITH_KNOTS('',3,(#816,#817,#818,#819,#820,#821,#822,
+#823,#824,#825,#826,#827,#828,#829,#830,#831,#832,#833,#834,#835,#836,#837,
+#838,#839,#840,#841,#842,#843),.UNSPECIFIED.,.F.,.F.,(4,2,2,2,2,2,2,2,2,
+2,2,2,2,4),(0.214188839292856,0.214688584905608,0.268440491190975,0.322192397476342,
+0.375923602321502,0.429654807166662,0.4834054490847,0.537156091002739,0.590947397157691,
+0.644738703312643,0.698396716312689,0.752054729312735,0.805787032878242,
+0.85951933644375),.UNSPECIFIED.);
+#148=B_SPLINE_CURVE_WITH_KNOTS('',3,(#847,#848,#849,#850,#851,#852,#853,
+#854,#855,#856,#857,#858,#859,#860,#861,#862,#863,#864,#865,#866,#867,#868),
+ .UNSPECIFIED.,.F.,.F.,(4,2,2,2,2,2,2,2,2,2,4),(0.190556118936317,0.191450128608833,
+0.239314040183927,0.287177951759022,0.335041114384101,0.382904277009179,
+0.430767439634258,0.478630602259336,0.526494513834431,0.574358425409526,
+0.575252435082043),.UNSPECIFIED.);
+#149=B_SPLINE_CURVE_WITH_KNOTS('',3,(#870,#871,#872,#873,#874,#875,#876,
+#877,#878,#879),.UNSPECIFIED.,.F.,.F.,(4,2,2,2,4),(0.765808554018358,0.813671529846346,
+0.861534505674333,0.909396594150762,0.956364672954675),.UNSPECIFIED.);
+#150=B_SPLINE_CURVE_WITH_KNOTS('',3,(#883,#884,#885,#886,#887,#888,#889,
+#890,#891,#892,#893,#894,#895,#896,#897,#898,#899,#900),.UNSPECIFIED.,.F.,
+ .F.,(4,2,2,2,2,2,2,2,4),(0.,0.0479365135772279,0.0958730271544559,0.143811562050636,
+0.191750096946816,0.239681277572823,0.28761245819883,0.335548147126999,
+0.383483836055169),.UNSPECIFIED.);
+#151=B_SPLINE_CURVE_WITH_KNOTS('',3,(#901,#902,#903,#904,#905,#906,#907,
+#908,#909,#910,#911,#912,#913,#914,#915,#916,#917,#918),.UNSPECIFIED.,.F.,
+ .F.,(4,2,2,2,2,2,2,2,4),(0.383483836055169,0.431419524983338,0.479355213911508,
+0.527286394537515,0.575217575163521,0.623156110059701,0.671094644955882,
+0.71903115853311,0.766967672110337),.UNSPECIFIED.);
+#152=B_SPLINE_CURVE_WITH_KNOTS('',3,(#919,#920,#921,#922,#923,#924,#925,
+#926,#927,#928),.UNSPECIFIED.,.F.,.F.,(4,2,2,2,4),(0.575252435082043,0.622220513885954,
+0.670082602362383,0.717945578190371,0.765808554018358),.UNSPECIFIED.);
+#153=B_SPLINE_CURVE_WITH_KNOTS('',3,(#932,#933,#934,#935,#936,#937,#938,
+#939,#940,#941,#942,#943,#944,#945,#946,#947,#948,#949,#950,#951,#952,#953),
+ .UNSPECIFIED.,.F.,.F.,(4,2,2,2,2,2,2,2,2,2,4),(0.190556118936314,0.191450128608833,
+0.239314040183927,0.287177951759022,0.3350411143841,0.382904277009179,0.430767439634258,
+0.478630602259336,0.526494513834431,0.574358425409525,0.575252435082045),
+ .UNSPECIFIED.);
+#154=B_SPLINE_CURVE_WITH_KNOTS('',3,(#955,#956,#957,#958,#959,#960,#961,
+#962,#963,#964),.UNSPECIFIED.,.F.,.F.,(4,2,2,2,4),(0.765808554018358,0.813671529846345,
+0.861534505674333,0.909396594150762,0.956364672954672),.UNSPECIFIED.);
+#155=B_SPLINE_CURVE_WITH_KNOTS('',3,(#968,#969,#970,#971,#972,#973,#974,
+#975,#976,#977,#978,#979,#980,#981,#982,#983,#984,#985),.UNSPECIFIED.,.F.,
+ .F.,(4,2,2,2,2,2,2,2,4),(0.,0.0479365135772278,0.0958730271544556,0.143811562050636,
+0.191750096946816,0.239681277572822,0.287612458198829,0.335548147126999,
+0.383483836055169),.UNSPECIFIED.);
+#156=B_SPLINE_CURVE_WITH_KNOTS('',3,(#986,#987,#988,#989,#990,#991,#992,
+#993,#994,#995,#996,#997,#998,#999,#1000,#1001,#1002,#1003),
+ .UNSPECIFIED.,.F.,.F.,(4,2,2,2,2,2,2,2,4),(0.383483836055169,0.431419524983338,
+0.479355213911508,0.527286394537514,0.575217575163521,0.623156110059701,
+0.671094644955881,0.719031158533109,0.766967672110337),.UNSPECIFIED.);
+#157=B_SPLINE_CURVE_WITH_KNOTS('',3,(#1004,#1005,#1006,#1007,#1008,#1009,
+#1010,#1011,#1012,#1013),.UNSPECIFIED.,.F.,.F.,(4,2,2,2,4),(0.575252435082045,
+0.622220513885954,0.670082602362383,0.71794557819037,0.765808554018358),
+ .UNSPECIFIED.);
+#158=VERTEX_POINT('',#517);
+#159=VERTEX_POINT('',#518);
+#160=VERTEX_POINT('',#557);
+#161=VERTEX_POINT('',#559);
+#162=VERTEX_POINT('',#599);
+#163=VERTEX_POINT('',#600);
+#164=VERTEX_POINT('',#639);
+#165=VERTEX_POINT('',#641);
+#166=VERTEX_POINT('',#681);
+#167=VERTEX_POINT('',#682);
+#168=VERTEX_POINT('',#721);
+#169=VERTEX_POINT('',#723);
+#170=VERTEX_POINT('',#763);
+#171=VERTEX_POINT('',#764);
+#172=VERTEX_POINT('',#803);
+#173=VERTEX_POINT('',#805);
+#174=VERTEX_POINT('',#845);
+#175=VERTEX_POINT('',#846);
+#176=VERTEX_POINT('',#869);
+#177=VERTEX_POINT('',#880);
+#178=VERTEX_POINT('',#882);
+#179=VERTEX_POINT('',#930);
+#180=VERTEX_POINT('',#931);
+#181=VERTEX_POINT('',#954);
+#182=VERTEX_POINT('',#965);
+#183=VERTEX_POINT('',#967);
+#184=VERTEX_POINT('',#1015);
+#185=VERTEX_POINT('',#1017);
+#186=VERTEX_POINT('',#1021);
+#187=VERTEX_POINT('',#1023);
+#188=VERTEX_POINT('',#1027);
+#189=VERTEX_POINT('',#1031);
+#190=VERTEX_POINT('',#1032);
+#191=VERTEX_POINT('',#1036);
+#192=VERTEX_POINT('',#1037);
+#193=VERTEX_POINT('',#1044);
+#194=VERTEX_POINT('',#1048);
+#195=VERTEX_POINT('',#1051);
+#196=VERTEX_POINT('',#1053);
+#197=EDGE_CURVE('',#158,#159,#132,.T.);
+#198=EDGE_CURVE('',#159,#158,#133,.T.);
+#199=EDGE_CURVE('',#159,#160,#104,.T.);
+#200=EDGE_CURVE('',#161,#160,#134,.T.);
+#201=EDGE_CURVE('',#160,#161,#135,.T.);
+#202=EDGE_CURVE('',#162,#163,#136,.T.);
+#203=EDGE_CURVE('',#163,#162,#137,.T.);
+#204=EDGE_CURVE('',#163,#164,#105,.T.);
+#205=EDGE_CURVE('',#165,#164,#138,.T.);
+#206=EDGE_CURVE('',#164,#165,#139,.T.);
+#207=EDGE_CURVE('',#166,#167,#140,.T.);
+#208=EDGE_CURVE('',#167,#166,#141,.T.);
+#209=EDGE_CURVE('',#167,#168,#106,.T.);
+#210=EDGE_CURVE('',#169,#168,#142,.T.);
+#211=EDGE_CURVE('',#168,#169,#143,.T.);
+#212=EDGE_CURVE('',#170,#171,#144,.T.);
+#213=EDGE_CURVE('',#171,#170,#145,.T.);
+#214=EDGE_CURVE('',#171,#172,#107,.T.);
+#215=EDGE_CURVE('',#173,#172,#146,.T.);
+#216=EDGE_CURVE('',#172,#173,#147,.T.);
+#217=EDGE_CURVE('',#174,#175,#148,.T.);
+#218=EDGE_CURVE('',#176,#174,#149,.T.);
+#219=EDGE_CURVE('',#176,#177,#108,.T.);
+#220=EDGE_CURVE('',#178,#177,#150,.T.);
+#221=EDGE_CURVE('',#177,#178,#151,.T.);
+#222=EDGE_CURVE('',#175,#176,#152,.T.);
+#223=EDGE_CURVE('',#179,#180,#153,.T.);
+#224=EDGE_CURVE('',#181,#179,#154,.T.);
+#225=EDGE_CURVE('',#181,#182,#109,.T.);
+#226=EDGE_CURVE('',#183,#182,#155,.T.);
+#227=EDGE_CURVE('',#182,#183,#156,.T.);
+#228=EDGE_CURVE('',#180,#181,#157,.T.);
+#229=EDGE_CURVE('',#184,#184,#40,.T.);
+#230=EDGE_CURVE('',#184,#185,#110,.T.);
+#231=EDGE_CURVE('',#185,#185,#41,.T.);
+#232=EDGE_CURVE('',#186,#186,#42,.T.);
+#233=EDGE_CURVE('',#186,#187,#111,.T.);
+#234=EDGE_CURVE('',#187,#187,#43,.T.);
+#235=EDGE_CURVE('',#188,#188,#44,.T.);
+#236=EDGE_CURVE('',#188,#187,#112,.T.);
+#237=EDGE_CURVE('',#189,#190,#45,.T.);
+#238=EDGE_CURVE('',#190,#189,#46,.T.);
+#239=EDGE_CURVE('',#191,#192,#47,.T.);
+#240=EDGE_CURVE('',#192,#185,#113,.T.);
+#241=EDGE_CURVE('',#192,#191,#48,.T.);
+#242=EDGE_CURVE('',#190,#192,#114,.T.);
+#243=EDGE_CURVE('',#193,#193,#49,.T.);
+#244=EDGE_CURVE('',#193,#188,#115,.T.);
+#245=EDGE_CURVE('',#194,#194,#50,.T.);
+#246=EDGE_CURVE('',#195,#195,#51,.T.);
+#247=EDGE_CURVE('',#195,#196,#116,.T.);
+#248=EDGE_CURVE('',#196,#196,#52,.T.);
+#249=EDGE_CURVE('',#196,#194,#117,.T.);
+#250=ORIENTED_EDGE('',*,*,#197,.F.);
+#251=ORIENTED_EDGE('',*,*,#198,.F.);
+#252=ORIENTED_EDGE('',*,*,#199,.T.);
+#253=ORIENTED_EDGE('',*,*,#200,.F.);
+#254=ORIENTED_EDGE('',*,*,#201,.F.);
+#255=ORIENTED_EDGE('',*,*,#199,.F.);
+#256=ORIENTED_EDGE('',*,*,#202,.F.);
+#257=ORIENTED_EDGE('',*,*,#203,.F.);
+#258=ORIENTED_EDGE('',*,*,#204,.T.);
+#259=ORIENTED_EDGE('',*,*,#205,.F.);
+#260=ORIENTED_EDGE('',*,*,#206,.F.);
+#261=ORIENTED_EDGE('',*,*,#204,.F.);
+#262=ORIENTED_EDGE('',*,*,#207,.F.);
+#263=ORIENTED_EDGE('',*,*,#208,.F.);
+#264=ORIENTED_EDGE('',*,*,#209,.T.);
+#265=ORIENTED_EDGE('',*,*,#210,.F.);
+#266=ORIENTED_EDGE('',*,*,#211,.F.);
+#267=ORIENTED_EDGE('',*,*,#209,.F.);
+#268=ORIENTED_EDGE('',*,*,#212,.F.);
+#269=ORIENTED_EDGE('',*,*,#213,.F.);
+#270=ORIENTED_EDGE('',*,*,#214,.T.);
+#271=ORIENTED_EDGE('',*,*,#215,.F.);
+#272=ORIENTED_EDGE('',*,*,#216,.F.);
+#273=ORIENTED_EDGE('',*,*,#214,.F.);
+#274=ORIENTED_EDGE('',*,*,#217,.F.);
+#275=ORIENTED_EDGE('',*,*,#218,.F.);
+#276=ORIENTED_EDGE('',*,*,#219,.T.);
+#277=ORIENTED_EDGE('',*,*,#220,.F.);
+#278=ORIENTED_EDGE('',*,*,#221,.F.);
+#279=ORIENTED_EDGE('',*,*,#219,.F.);
+#280=ORIENTED_EDGE('',*,*,#222,.F.);
+#281=ORIENTED_EDGE('',*,*,#223,.F.);
+#282=ORIENTED_EDGE('',*,*,#224,.F.);
+#283=ORIENTED_EDGE('',*,*,#225,.T.);
+#284=ORIENTED_EDGE('',*,*,#226,.F.);
+#285=ORIENTED_EDGE('',*,*,#227,.F.);
+#286=ORIENTED_EDGE('',*,*,#225,.F.);
+#287=ORIENTED_EDGE('',*,*,#228,.F.);
+#288=ORIENTED_EDGE('',*,*,#229,.F.);
+#289=ORIENTED_EDGE('',*,*,#230,.T.);
+#290=ORIENTED_EDGE('',*,*,#231,.F.);
+#291=ORIENTED_EDGE('',*,*,#230,.F.);
+#292=ORIENTED_EDGE('',*,*,#232,.T.);
+#293=ORIENTED_EDGE('',*,*,#233,.T.);
+#294=ORIENTED_EDGE('',*,*,#234,.T.);
+#295=ORIENTED_EDGE('',*,*,#233,.F.);
+#296=ORIENTED_EDGE('',*,*,#235,.F.);
+#297=ORIENTED_EDGE('',*,*,#236,.T.);
+#298=ORIENTED_EDGE('',*,*,#234,.F.);
+#299=ORIENTED_EDGE('',*,*,#236,.F.);
+#300=ORIENTED_EDGE('',*,*,#197,.T.);
+#301=ORIENTED_EDGE('',*,*,#198,.T.);
+#302=ORIENTED_EDGE('',*,*,#202,.T.);
+#303=ORIENTED_EDGE('',*,*,#203,.T.);
+#304=ORIENTED_EDGE('',*,*,#207,.T.);
+#305=ORIENTED_EDGE('',*,*,#208,.T.);
+#306=ORIENTED_EDGE('',*,*,#212,.T.);
+#307=ORIENTED_EDGE('',*,*,#213,.T.);
+#308=ORIENTED_EDGE('',*,*,#217,.T.);
+#309=ORIENTED_EDGE('',*,*,#222,.T.);
+#310=ORIENTED_EDGE('',*,*,#218,.T.);
+#311=ORIENTED_EDGE('',*,*,#223,.T.);
+#312=ORIENTED_EDGE('',*,*,#228,.T.);
+#313=ORIENTED_EDGE('',*,*,#224,.T.);
+#314=ORIENTED_EDGE('',*,*,#232,.F.);
+#315=ORIENTED_EDGE('',*,*,#237,.T.);
+#316=ORIENTED_EDGE('',*,*,#238,.T.);
+#317=ORIENTED_EDGE('',*,*,#239,.T.);
+#318=ORIENTED_EDGE('',*,*,#240,.T.);
+#319=ORIENTED_EDGE('',*,*,#231,.T.);
+#320=ORIENTED_EDGE('',*,*,#240,.F.);
+#321=ORIENTED_EDGE('',*,*,#241,.T.);
+#322=ORIENTED_EDGE('',*,*,#237,.F.);
+#323=ORIENTED_EDGE('',*,*,#238,.F.);
+#324=ORIENTED_EDGE('',*,*,#242,.T.);
+#325=ORIENTED_EDGE('',*,*,#239,.F.);
+#326=ORIENTED_EDGE('',*,*,#241,.F.);
+#327=ORIENTED_EDGE('',*,*,#242,.F.);
+#328=ORIENTED_EDGE('',*,*,#200,.T.);
+#329=ORIENTED_EDGE('',*,*,#201,.T.);
+#330=ORIENTED_EDGE('',*,*,#205,.T.);
+#331=ORIENTED_EDGE('',*,*,#206,.T.);
+#332=ORIENTED_EDGE('',*,*,#210,.T.);
+#333=ORIENTED_EDGE('',*,*,#211,.T.);
+#334=ORIENTED_EDGE('',*,*,#215,.T.);
+#335=ORIENTED_EDGE('',*,*,#216,.T.);
+#336=ORIENTED_EDGE('',*,*,#220,.T.);
+#337=ORIENTED_EDGE('',*,*,#221,.T.);
+#338=ORIENTED_EDGE('',*,*,#226,.T.);
+#339=ORIENTED_EDGE('',*,*,#227,.T.);
+#340=ORIENTED_EDGE('',*,*,#243,.T.);
+#341=ORIENTED_EDGE('',*,*,#244,.T.);
+#342=ORIENTED_EDGE('',*,*,#235,.T.);
+#343=ORIENTED_EDGE('',*,*,#244,.F.);
+#344=ORIENTED_EDGE('',*,*,#243,.F.);
+#345=ORIENTED_EDGE('',*,*,#245,.T.);
+#346=ORIENTED_EDGE('',*,*,#246,.T.);
+#347=ORIENTED_EDGE('',*,*,#247,.T.);
+#348=ORIENTED_EDGE('',*,*,#248,.T.);
+#349=ORIENTED_EDGE('',*,*,#247,.F.);
+#350=ORIENTED_EDGE('',*,*,#248,.F.);
+#351=ORIENTED_EDGE('',*,*,#249,.T.);
+#352=ORIENTED_EDGE('',*,*,#245,.F.);
+#353=ORIENTED_EDGE('',*,*,#249,.F.);
+#354=ORIENTED_EDGE('',*,*,#246,.F.);
+#355=ORIENTED_EDGE('',*,*,#229,.T.);
+#356=CYLINDRICAL_SURFACE('',#403,0.056);
+#357=CYLINDRICAL_SURFACE('',#404,0.056);
+#358=CYLINDRICAL_SURFACE('',#405,0.056);
+#359=CYLINDRICAL_SURFACE('',#406,0.056);
+#360=CYLINDRICAL_SURFACE('',#407,0.05);
+#361=CYLINDRICAL_SURFACE('',#408,0.05);
+#362=CYLINDRICAL_SURFACE('',#409,0.015);
+#363=CYLINDRICAL_SURFACE('',#415,0.6);
+#364=CYLINDRICAL_SURFACE('',#423,0.3);
+#365=CYLINDRICAL_SURFACE('',#431,0.4685);
+#366=ADVANCED_FACE('',(#55),#356,.F.);
+#367=ADVANCED_FACE('',(#56),#357,.F.);
+#368=ADVANCED_FACE('',(#57),#358,.F.);
+#369=ADVANCED_FACE('',(#58),#359,.F.);
+#370=ADVANCED_FACE('',(#59),#360,.F.);
+#371=ADVANCED_FACE('',(#60),#361,.F.);
+#372=ADVANCED_FACE('',(#61),#362,.F.);
+#373=ADVANCED_FACE('',(#62),#36,.T.);
+#374=ADVANCED_FACE('',(#63,#21,#22,#23,#24,#25,#26),#363,.T.);
+#375=ADVANCED_FACE('',(#64,#27),#18,.F.);
+#376=ADVANCED_FACE('',(#65),#37,.F.);
+#377=ADVANCED_FACE('',(#66,#28,#29,#30,#31,#32,#33),#364,.F.);
+#378=ADVANCED_FACE('',(#67),#38,.T.);
+#379=ADVANCED_FACE('',(#68,#34),#19,.T.);
+#380=ADVANCED_FACE('',(#69),#39,.T.);
+#381=ADVANCED_FACE('',(#70),#365,.T.);
+#382=ADVANCED_FACE('',(#71,#35),#20,.T.);
+#383=CLOSED_SHELL('',(#366,#367,#368,#369,#370,#371,#372,#373,#374,#375,
+#376,#377,#378,#379,#380,#381,#382));
+#384=DERIVED_UNIT_ELEMENT(#386,1.);
+#385=DERIVED_UNIT_ELEMENT(#1068,3.);
+#386=(
+MASS_UNIT()
+NAMED_UNIT(*)
+SI_UNIT($,.GRAM.)
+);
+#387=DERIVED_UNIT((#384,#385));
+#388=MEASURE_REPRESENTATION_ITEM('density measure',
+POSITIVE_RATIO_MEASURE(1.),#387);
+#389=PROPERTY_DEFINITION_REPRESENTATION(#394,#391);
+#390=PROPERTY_DEFINITION_REPRESENTATION(#395,#392);
+#391=REPRESENTATION('material name',(#393),#1063);
+#392=REPRESENTATION('density',(#388),#1063);
+#393=DESCRIPTIVE_REPRESENTATION_ITEM('Generic','Generic');
+#394=PROPERTY_DEFINITION('material property','material name',#1076);
+#395=PROPERTY_DEFINITION('material property','density of part',#1076);
+#396=DATE_TIME_ROLE('creation_date');
+#397=APPLIED_DATE_AND_TIME_ASSIGNMENT(#398,#396,(#1076));
+#398=DATE_AND_TIME(#399,#400);
+#399=CALENDAR_DATE(2019,7,3);
+#400=LOCAL_TIME(14,17,5.,#401);
+#401=COORDINATED_UNIVERSAL_TIME_OFFSET(0,0,.BEHIND.);
+#402=AXIS2_PLACEMENT_3D('placement',#515,#435,#436);
+#403=AXIS2_PLACEMENT_3D('',#516,#437,#438);
+#404=AXIS2_PLACEMENT_3D('',#598,#440,#441);
+#405=AXIS2_PLACEMENT_3D('',#680,#443,#444);
+#406=AXIS2_PLACEMENT_3D('',#762,#446,#447);
+#407=AXIS2_PLACEMENT_3D('',#844,#449,#450);
+#408=AXIS2_PLACEMENT_3D('',#929,#452,#453);
+#409=AXIS2_PLACEMENT_3D('',#1014,#455,#456);
+#410=AXIS2_PLACEMENT_3D('',#1016,#457,#458);
+#411=AXIS2_PLACEMENT_3D('',#1019,#460,#461);
+#412=AXIS2_PLACEMENT_3D('',#1020,#462,#463);
+#413=AXIS2_PLACEMENT_3D('',#1022,#464,#465);
+#414=AXIS2_PLACEMENT_3D('',#1025,#467,#468);
+#415=AXIS2_PLACEMENT_3D('',#1026,#469,#470);
+#416=AXIS2_PLACEMENT_3D('',#1028,#471,#472);
+#417=AXIS2_PLACEMENT_3D('',#1030,#474,#475);
+#418=AXIS2_PLACEMENT_3D('',#1033,#476,#477);
+#419=AXIS2_PLACEMENT_3D('',#1034,#478,#479);
+#420=AXIS2_PLACEMENT_3D('',#1035,#480,#481);
+#421=AXIS2_PLACEMENT_3D('',#1038,#482,#483);
+#422=AXIS2_PLACEMENT_3D('',#1040,#485,#486);
+#423=AXIS2_PLACEMENT_3D('',#1041,#487,#488);
+#424=AXIS2_PLACEMENT_3D('',#1043,#490,#491);
+#425=AXIS2_PLACEMENT_3D('',#1045,#492,#493);
+#426=AXIS2_PLACEMENT_3D('',#1047,#495,#496);
+#427=AXIS2_PLACEMENT_3D('',#1049,#497,#498);
+#428=AXIS2_PLACEMENT_3D('',#1050,#499,#500);
+#429=AXIS2_PLACEMENT_3D('',#1052,#501,#502);
+#430=AXIS2_PLACEMENT_3D('',#1055,#504,#505);
+#431=AXIS2_PLACEMENT_3D('',#1056,#506,#507);
+#432=AXIS2_PLACEMENT_3D('',#1058,#509,#510);
+#433=AXIS2_PLACEMENT_3D('',#1059,#511,#512);
+#434=AXIS2_PLACEMENT_3D('',#1060,#513,#514);
+#435=DIRECTION('axis',(0.,0.,1.));
+#436=DIRECTION('refdir',(1.,0.,0.));
+#437=DIRECTION('center_axis',(-0.86600171685817,-0.5,-0.00640518529799896));
+#438=DIRECTION('ref_axis',(-0.00739607091201825,-2.32481483835826E-17,0.999972648693485));
+#439=DIRECTION('',(-0.86600171685817,-0.5,-0.00640518529799896));
+#440=DIRECTION('center_axis',(-0.86600171685817,-0.5,-0.0064051852979989));
+#441=DIRECTION('ref_axis',(-0.00739607091201819,8.00346091893826E-18,0.999972648693485));
+#442=DIRECTION('',(-0.86600171685817,-0.5,-0.0064051852979989));
+#443=DIRECTION('center_axis',(0.866004003731957,-0.5,0.00608814587712049));
+#444=DIRECTION('ref_axis',(0.00702998532204243,-3.43005467954498E-17,-0.999975289347878));
+#445=DIRECTION('',(0.866004003731957,-0.5,0.00608814587712049));
+#446=DIRECTION('center_axis',(0.866004003731957,-0.5,0.00608814587712036));
+#447=DIRECTION('ref_axis',(0.00702998532204232,2.8202671809592E-17,-0.999975289347878));
+#448=DIRECTION('',(0.866004003731957,-0.5,0.00608814587712036));
+#449=DIRECTION('center_axis',(0.,1.,0.));
+#450=DIRECTION('ref_axis',(1.,0.,0.));
+#451=DIRECTION('',(0.,1.,0.));
+#452=DIRECTION('center_axis',(0.,1.,0.));
+#453=DIRECTION('ref_axis',(1.,0.,0.));
+#454=DIRECTION('',(0.,1.,0.));
+#455=DIRECTION('center_axis',(0.,0.,-1.));
+#456=DIRECTION('ref_axis',(-1.,0.,0.));
+#457=DIRECTION('center_axis',(0.,0.,-1.));
+#458=DIRECTION('ref_axis',(-1.,0.,0.));
+#459=DIRECTION('',(0.,0.,-1.));
+#460=DIRECTION('center_axis',(0.,0.,1.));
+#461=DIRECTION('ref_axis',(-1.,0.,0.));
+#462=DIRECTION('center_axis',(0.,0.,1.));
+#463=DIRECTION('ref_axis',(-1.,0.,0.));
+#464=DIRECTION('center_axis',(0.,0.,1.));
+#465=DIRECTION('ref_axis',(-1.,0.,0.));
+#466=DIRECTION('',(0.707106781186549,-8.65956056235495E-17,0.707106781186546));
+#467=DIRECTION('center_axis',(0.,0.,-1.));
+#468=DIRECTION('ref_axis',(-1.,0.,0.));
+#469=DIRECTION('center_axis',(0.,0.,1.));
+#470=DIRECTION('ref_axis',(-1.,0.,0.));
+#471=DIRECTION('center_axis',(0.,0.,1.));
+#472=DIRECTION('ref_axis',(-1.,0.,0.));
+#473=DIRECTION('',(0.,0.,-1.));
+#474=DIRECTION('center_axis',(0.,0.,1.));
+#475=DIRECTION('ref_axis',(1.,0.,0.));
+#476=DIRECTION('center_axis',(0.,0.,1.));
+#477=DIRECTION('ref_axis',(-1.,0.,0.));
+#478=DIRECTION('center_axis',(0.,0.,1.));
+#479=DIRECTION('ref_axis',(-1.,0.,0.));
+#480=DIRECTION('center_axis',(0.,0.,-1.));
+#481=DIRECTION('ref_axis',(-1.,0.,0.));
+#482=DIRECTION('center_axis',(0.,0.,-1.));
+#483=DIRECTION('ref_axis',(-1.,0.,0.));
+#484=DIRECTION('',(-0.866025403784439,1.06057523872491E-16,0.5));
+#485=DIRECTION('center_axis',(0.,0.,-1.));
+#486=DIRECTION('ref_axis',(-1.,0.,0.));
+#487=DIRECTION('center_axis',(0.,0.,-1.));
+#488=DIRECTION('ref_axis',(-1.,0.,0.));
+#489=DIRECTION('',(0.,0.,1.));
+#490=DIRECTION('center_axis',(0.,0.,-1.));
+#491=DIRECTION('ref_axis',(-1.,0.,0.));
+#492=DIRECTION('center_axis',(0.,0.,-1.));
+#493=DIRECTION('ref_axis',(-1.,0.,0.));
+#494=DIRECTION('',(0.707106781186549,8.65956056235495E-17,-0.707106781186546));
+#495=DIRECTION('center_axis',(0.,0.,1.));
+#496=DIRECTION('ref_axis',(1.,0.,0.));
+#497=DIRECTION('center_axis',(0.,0.,-1.));
+#498=DIRECTION('ref_axis',(-1.,0.,0.));
+#499=DIRECTION('center_axis',(0.,0.,-1.));
+#500=DIRECTION('ref_axis',(-1.,0.,0.));
+#501=DIRECTION('center_axis',(0.,0.,-1.));
+#502=DIRECTION('ref_axis',(-1.,0.,0.));
+#503=DIRECTION('',(0.707106781186548,8.65956056235494E-17,-0.707106781186548));
+#504=DIRECTION('center_axis',(0.,0.,1.));
+#505=DIRECTION('ref_axis',(-1.,0.,0.));
+#506=DIRECTION('center_axis',(0.,0.,1.));
+#507=DIRECTION('ref_axis',(-1.,0.,0.));
+#508=DIRECTION('',(0.,0.,-1.));
+#509=DIRECTION('center_axis',(0.,0.,1.));
+#510=DIRECTION('ref_axis',(1.,0.,0.));
+#511=DIRECTION('center_axis',(0.,1.,0.));
+#512=DIRECTION('ref_axis',(-1.,0.,0.));
+#513=DIRECTION('center_axis',(0.,1.,0.));
+#514=DIRECTION('ref_axis',(-1.,0.,0.));
+#515=CARTESIAN_POINT('',(0.,0.,0.));
+#516=CARTESIAN_POINT('Origin',(3.85105258097654,2.60749525593453,1.45397919865025));
+#517=CARTESIAN_POINT('',(3.85714908296617,2.54635149695176,1.45381719014639));
+#518=CARTESIAN_POINT('',(3.83156504744707,2.59600468200297,1.39783353181302));
+#519=CARTESIAN_POINT('Ctrl Pts',(3.85714908296617,2.54635149695176,1.45381719014639));
+#520=CARTESIAN_POINT('Ctrl Pts',(3.85714908296617,2.54635149695176,1.4608549047437));
+#521=CARTESIAN_POINT('Ctrl Pts',(3.85656521723739,2.54763971971988,1.4683587497605));
+#522=CARTESIAN_POINT('Ctrl Pts',(3.85413968317197,2.55284102256025,1.48215858725471));
+#523=CARTESIAN_POINT('Ctrl Pts',(3.85229190615329,2.55675027909554,1.48845494622483));
+#524=CARTESIAN_POINT('Ctrl Pts',(3.84789960553893,2.5656909014055,1.49839729014427));
+#525=CARTESIAN_POINT('Ctrl Pts',(3.84506070305551,2.57131896543069,1.50270813028563));
+#526=CARTESIAN_POINT('Ctrl Pts',(3.83860116617598,2.58351877157309,1.50842734077533));
+#527=CARTESIAN_POINT('Ctrl Pts',(3.83497427013993,2.59008734021619,1.5098354062095));
+#528=CARTESIAN_POINT('Ctrl Pts',(3.82794936789801,2.60228051568912,1.50983548954652));
+#529=CARTESIAN_POINT('Ctrl Pts',(3.82408625796584,2.6087124420339,1.50842769074694));
+#530=CARTESIAN_POINT('Ctrl Pts',(3.81677261651193,2.62041898677119,1.5027089342687));
+#531=CARTESIAN_POINT('Ctrl Pts',(3.81332797400472,2.62569742766785,1.49839827219974));
+#532=CARTESIAN_POINT('Ctrl Pts',(3.80779691049681,2.63398106943863,1.4884559486545));
+#533=CARTESIAN_POINT('Ctrl Pts',(3.80534206064745,2.63754003877287,1.48215941180674));
+#534=CARTESIAN_POINT('Ctrl Pts',(3.8020594299478,2.64224665387495,1.46835936483335));
+#535=CARTESIAN_POINT('Ctrl Pts',(3.80123800530685,2.64339768292625,1.46085549758713));
+#536=CARTESIAN_POINT('Ctrl Pts',(3.80123800530685,2.64339768292625,1.44678302890757));
+#537=CARTESIAN_POINT('Ctrl Pts',(3.80205885607222,2.64224746293885,1.4392819628702));
+#538=CARTESIAN_POINT('Ctrl Pts',(3.80534075173454,2.63754192923127,1.42548834910031));
+#539=CARTESIAN_POINT('Ctrl Pts',(3.80779547137615,2.63398318250013,1.41919546848165));
+#540=CARTESIAN_POINT('Ctrl Pts',(3.81332709294009,2.62569878942786,1.40925910324609));
+#541=CARTESIAN_POINT('Ctrl Pts',(3.81677242141554,2.62041930407325,1.40495205263784));
+#542=CARTESIAN_POINT('Ctrl Pts',(3.82408669814515,2.60871173244088,1.3992390223064));
+#543=CARTESIAN_POINT('Ctrl Pts',(3.82794973387119,2.60227988046674,1.39783319199315));
+#544=CARTESIAN_POINT('Ctrl Pts',(3.83149613388275,2.5961243673864,1.3978331499219));
+#545=CARTESIAN_POINT('Ctrl Pts',(3.83153058488902,2.59606454668274,1.39783327691852));
+#546=CARTESIAN_POINT('Ctrl Pts',(3.83156504744814,2.59600468200111,1.39783353181303));
+#547=CARTESIAN_POINT('Ctrl Pts',(3.83156504744814,2.59600468200111,1.39783353181303));
+#548=CARTESIAN_POINT('Ctrl Pts',(3.83504510250342,2.58995950157252,1.39785927125153));
+#549=CARTESIAN_POINT('Ctrl Pts',(3.83863226246121,2.58346002385255,1.39926695711013));
+#550=CARTESIAN_POINT('Ctrl Pts',(3.8450605985991,2.57131918059853,1.40495185390381));
+#551=CARTESIAN_POINT('Ctrl Pts',(3.84790004161821,2.56569005427878,1.40925876388975));
+#552=CARTESIAN_POINT('Ctrl Pts',(3.85229281824087,2.55674838198399,1.41919479316458));
+#553=CARTESIAN_POINT('Ctrl Pts',(3.85414054676362,2.55283918749669,1.42548750285585));
+#554=CARTESIAN_POINT('Ctrl Pts',(3.85656561061455,2.54763885933723,1.43928102485921));
+#555=CARTESIAN_POINT('Ctrl Pts',(3.85714908296617,2.54635149695176,1.44678217908935));
+#556=CARTESIAN_POINT('Ctrl Pts',(3.85714908296617,2.54635149695176,1.45381719014639));
+#557=CARTESIAN_POINT('',(3.57175878402722,2.446001363086,1.39591193370716));
+#558=CARTESIAN_POINT('',(3.85146676094761,2.60749525593453,1.39798073032341));
+#559=CARTESIAN_POINT('',(3.53917978480351,2.49209416042628,1.45187960214126));
+#560=CARTESIAN_POINT('Ctrl Pts',(3.53917978480351,2.49209416042628,1.45187960214126));
+#561=CARTESIAN_POINT('Ctrl Pts',(3.53917978480351,2.49209416042628,1.45893236215918));
+#562=CARTESIAN_POINT('Ctrl Pts',(3.54012598979461,2.49100846296124,1.46644358672554));
+#563=CARTESIAN_POINT('Ctrl Pts',(3.54384509051644,2.48654807758169,1.48024379282251));
+#564=CARTESIAN_POINT('Ctrl Pts',(3.54660437516766,2.48316658325639,1.4865342383405));
+#565=CARTESIAN_POINT('Ctrl Pts',(3.55269545558733,2.47522204923038,1.49646541590112));
+#566=CARTESIAN_POINT('Ctrl Pts',(3.55643496000936,2.47012415825445,1.50077552658412));
+#567=CARTESIAN_POINT('Ctrl Pts',(3.56416411756327,2.45866293909087,1.50650030073163));
+#568=CARTESIAN_POINT('Ctrl Pts',(3.56814260590725,2.45229157158622,1.50791393471356));
+#569=CARTESIAN_POINT('Ctrl Pts',(3.57516962733923,2.44006860560427,1.50791376772118));
+#570=CARTESIAN_POINT('Ctrl Pts',(3.57867458947106,2.43342280275598,1.5064992528059));
+#571=CARTESIAN_POINT('Ctrl Pts',(3.58469158358531,2.42097249862616,1.50077298842335));
+#572=CARTESIAN_POINT('Ctrl Pts',(3.58721617997584,2.41517358303897,1.49646230490867));
+#573=CARTESIAN_POINT('Ctrl Pts',(3.59101765321943,2.40590908338678,1.48653124528102));
+#574=CARTESIAN_POINT('Ctrl Pts',(3.59255195329953,2.40182119508132,1.48024159970754));
+#575=CARTESIAN_POINT('Ctrl Pts',(3.59453594871176,2.39635972089679,1.46644237149991));
+#576=CARTESIAN_POINT('Ctrl Pts',(3.59499836854274,2.39499457160148,1.45893128356428));
+#577=CARTESIAN_POINT('Ctrl Pts',(3.59499836854274,2.39499457160148,1.44483047510539));
+#578=CARTESIAN_POINT('Ctrl Pts',(3.59453655402364,2.39635797571758,1.43732460541792));
+#579=CARTESIAN_POINT('Ctrl Pts',(3.59255324751158,2.40181771124038,1.42353783316762));
+#580=CARTESIAN_POINT('Ctrl Pts',(3.59101897874622,2.40590569875661,1.41725546859266));
+#581=CARTESIAN_POINT('Ctrl Pts',(3.58721666041436,2.41517256628969,1.40733736624589));
+#582=CARTESIAN_POINT('Ctrl Pts',(3.58469112066841,2.42097356181897,1.40303478248845));
+#583=CARTESIAN_POINT('Ctrl Pts',(3.57870277219191,2.43336438302249,1.39734940486165));
+#584=CARTESIAN_POINT('Ctrl Pts',(3.57523756946929,2.43994060312206,1.39593766375691));
+#585=CARTESIAN_POINT('Ctrl Pts',(3.57175878403159,2.44600136307844,1.39591193370719));
+#586=CARTESIAN_POINT('Ctrl Pts',(3.57175878403159,2.44600136307844,1.39591193370719));
+#587=CARTESIAN_POINT('Ctrl Pts',(3.57172439786516,2.44606127085495,1.39591167937769));
+#588=CARTESIAN_POINT('Ctrl Pts',(3.57169001243574,2.44612112942354,1.39591155286283));
+#589=CARTESIAN_POINT('Ctrl Pts',(3.56814327478809,2.45229040811918,1.39591163714864));
+#590=CARTESIAN_POINT('Ctrl Pts',(3.56416490532084,2.45866176662755,1.3973213768375));
+#591=CARTESIAN_POINT('Ctrl Pts',(3.55643428974559,2.47012515649145,1.40303486391661));
+#592=CARTESIAN_POINT('Ctrl Pts',(3.55269324205056,2.47522510696598,1.40733786631685));
+#593=CARTESIAN_POINT('Ctrl Pts',(3.54660093684704,2.48317089697276,1.41725714737067));
+#594=CARTESIAN_POINT('Ctrl Pts',(3.54384199143394,2.48655184682053,1.42354013592815));
+#595=CARTESIAN_POINT('Ctrl Pts',(3.54012463851088,2.49101003106462,1.43732717117398));
+#596=CARTESIAN_POINT('Ctrl Pts',(3.53917978480351,2.49209416042628,1.44483263853947));
+#597=CARTESIAN_POINT('Ctrl Pts',(3.53917978480351,2.49209416042628,1.45187960214126));
+#598=CARTESIAN_POINT('Origin',(3.86066747316216,2.60749525593453,0.154014755348715));
+#599=CARTESIAN_POINT('',(3.85914179584646,2.54195070931072,0.15379637112426));
+#600=CARTESIAN_POINT('',(3.83394690233586,2.59182857173461,0.097815590991504));
+#601=CARTESIAN_POINT('Ctrl Pts',(3.85914179584646,2.54195070931072,0.15379637112426));
+#602=CARTESIAN_POINT('Ctrl Pts',(3.85914179584646,2.54195070931072,0.160834644440107));
+#603=CARTESIAN_POINT('Ctrl Pts',(3.8585677550759,2.54324486960331,0.168338611213388));
+#604=CARTESIAN_POINT('Ctrl Pts',(3.85618253508124,2.5484690539728,0.182137814680832));
+#605=CARTESIAN_POINT('Ctrl Pts',(3.85436524297636,2.55239520678501,0.188433459406146));
+#606=CARTESIAN_POINT('Ctrl Pts',(3.85004320204612,2.56137443651483,0.198375699007599));
+#607=CARTESIAN_POINT('Ctrl Pts',(3.84724843418568,2.56702743580958,0.202687109840433));
+#608=CARTESIAN_POINT('Ctrl Pts',(3.84088481720274,2.57928287112405,0.208407989550536));
+#609=CARTESIAN_POINT('Ctrl Pts',(3.83730967819124,2.58588220054325,0.209817114768156));
+#610=CARTESIAN_POINT('Ctrl Pts',(3.83038190337309,2.59813268211204,0.209817920419141));
+#611=CARTESIAN_POINT('Ctrl Pts',(3.8265706915065,2.60459496490107,0.208410762345464));
+#612=CARTESIAN_POINT('Ctrl Pts',(3.81935208031927,2.61635819850918,0.202691974769628));
+#613=CARTESIAN_POINT('Ctrl Pts',(3.81595061734054,2.62166291455675,0.198380599078015));
+#614=CARTESIAN_POINT('Ctrl Pts',(3.8104886262159,2.62998695101611,0.188436927069055));
+#615=CARTESIAN_POINT('Ctrl Pts',(3.80806429856143,2.63356276446412,0.182140371147957));
+#616=CARTESIAN_POINT('Ctrl Pts',(3.80482249553144,2.6382913869394,0.168341484595636));
+#617=CARTESIAN_POINT('Ctrl Pts',(3.80401133394344,2.63944759632951,0.160838836827118));
+#618=CARTESIAN_POINT('Ctrl Pts',(3.80401133394344,2.63944759632951,0.146768537238055));
+#619=CARTESIAN_POINT('Ctrl Pts',(3.80482216678581,2.63829186166748,0.139267634012918));
+#620=CARTESIAN_POINT('Ctrl Pts',(3.80806398560611,2.63356322574553,0.125473347345942));
+#621=CARTESIAN_POINT('Ctrl Pts',(3.81048868326422,2.62998687572445,0.119179669233072));
+#622=CARTESIAN_POINT('Ctrl Pts',(3.81595155247224,2.62166147777189,0.10924204323781));
+#623=CARTESIAN_POINT('Ctrl Pts',(3.8193533587626,2.61635616642421,0.104934586157788));
+#624=CARTESIAN_POINT('Ctrl Pts',(3.82657185041127,2.60459302513891,0.0992213202299627));
+#625=CARTESIAN_POINT('Ctrl Pts',(3.83038257927128,2.59813148691177,0.0978156227915164));
+#626=CARTESIAN_POINT('Ctrl Pts',(3.83387894720815,2.59194881035362,0.0978152161887694));
+#627=CARTESIAN_POINT('Ctrl Pts',(3.83391291918176,2.59188871306246,0.0978153396427724));
+#628=CARTESIAN_POINT('Ctrl Pts',(3.83394690234382,2.59182857172083,0.0978155909915629));
+#629=CARTESIAN_POINT('Ctrl Pts',(3.83394690234382,2.59182857172083,0.0978155909915628));
+#630=CARTESIAN_POINT('Ctrl Pts',(3.83737979955692,2.58575323818682,0.0978409816412184));
+#631=CARTESIAN_POINT('Ctrl Pts',(3.84091612013506,2.57922261990822,0.0992492130957238));
+#632=CARTESIAN_POINT('Ctrl Pts',(3.84724958679999,2.56702518184493,0.104935572680669));
+#633=CARTESIAN_POINT('Ctrl Pts',(3.85004510423203,2.56137059465513,0.109243357148785));
+#634=CARTESIAN_POINT('Ctrl Pts',(3.85436726258622,2.55239090087216,0.119179367662418));
+#635=CARTESIAN_POINT('Ctrl Pts',(3.85618411226059,2.54846562912111,0.12547058548544));
+#636=CARTESIAN_POINT('Ctrl Pts',(3.85856830912364,2.54324362654746,0.139261642008026));
+#637=CARTESIAN_POINT('Ctrl Pts',(3.85914179584646,2.54195070931072,0.146761862375333));
+#638=CARTESIAN_POINT('Ctrl Pts',(3.85914179584646,2.54195070931072,0.15379637112426));
+#639=CARTESIAN_POINT('',(3.57411866925804,2.4418125682345,0.0958938303920528));
+#640=CARTESIAN_POINT('',(3.86108165313324,2.60749525593453,0.0980162870218799));
+#641=CARTESIAN_POINT('',(3.54233152907069,2.48836255817155,0.151867355631928));
+#642=CARTESIAN_POINT('Ctrl Pts',(3.54233152907069,2.48836255817155,0.151867355631928));
+#643=CARTESIAN_POINT('Ctrl Pts',(3.54233152907069,2.48836255817155,0.158918900912089));
+#644=CARTESIAN_POINT('Ctrl Pts',(3.54325677463078,2.48726533720719,0.16643057641922));
+#645=CARTESIAN_POINT('Ctrl Pts',(3.54689465940225,2.48275539123333,0.180234554381625));
+#646=CARTESIAN_POINT('Ctrl Pts',(3.54959392100456,2.4793358385783,0.186528147557375));
+#647=CARTESIAN_POINT('Ctrl Pts',(3.55554804574197,2.47130405590604,0.196460130070642));
+#648=CARTESIAN_POINT('Ctrl Pts',(3.55919990965638,2.46615339904367,0.200768072033793));
+#649=CARTESIAN_POINT('Ctrl Pts',(3.56673520444298,2.45458206874687,0.206486727572664));
+#650=CARTESIAN_POINT('Ctrl Pts',(3.57060727354011,2.44815357271051,0.207896575325244));
+#651=CARTESIAN_POINT('Ctrl Pts',(3.57743868311233,2.43581745515564,0.207894960855373));
+#652=CARTESIAN_POINT('Ctrl Pts',(3.58084075037806,2.42910756408446,0.206476594777908));
+#653=CARTESIAN_POINT('Ctrl Pts',(3.58666491905166,2.41654306714901,0.200743529076881));
+#654=CARTESIAN_POINT('Ctrl Pts',(3.58909966822346,2.41069377169775,0.196430048252483));
+#655=CARTESIAN_POINT('Ctrl Pts',(3.59275590333913,2.40135437060727,0.186499206948409));
+#656=CARTESIAN_POINT('Ctrl Pts',(3.59422650699939,2.39723385078404,0.180213349565959));
+#657=CARTESIAN_POINT('Ctrl Pts',(3.59612596288834,2.39172698430799,0.166418828694935));
+#658=CARTESIAN_POINT('Ctrl Pts',(3.59656765515724,2.39034931200528,0.158908474777534));
+#659=CARTESIAN_POINT('Ctrl Pts',(3.59656765515724,2.39034931200528,0.144807225334844));
+#660=CARTESIAN_POINT('Ctrl Pts',(3.59612676170901,2.3917245304475,0.137303912871831));
+#661=CARTESIAN_POINT('Ctrl Pts',(3.59422872928203,2.39722754569861,0.123525087407623));
+#662=CARTESIAN_POINT('Ctrl Pts',(3.5927587074943,2.40134677224475,0.117247930596666));
+#663=CARTESIAN_POINT('Ctrl Pts',(3.58910223057315,2.41068766190118,0.107330234184598));
+#664=CARTESIAN_POINT('Ctrl Pts',(3.58666630124302,2.41654000867363,0.103024593852197));
+#665=CARTESIAN_POINT('Ctrl Pts',(3.58086901499622,2.42904666464198,0.0973332960651063));
+#666=CARTESIAN_POINT('Ctrl Pts',(3.57750504127853,2.43568750377299,0.0959188769407764));
+#667=CARTESIAN_POINT('Ctrl Pts',(3.57411866929019,2.44181256817882,0.0958938303922906));
+#668=CARTESIAN_POINT('Ctrl Pts',(3.57411866929019,2.44181256817882,0.0958938303922906));
+#669=CARTESIAN_POINT('Ctrl Pts',(3.57408524215647,2.44187302915227,0.0958935831559184));
+#670=CARTESIAN_POINT('Ctrl Pts',(3.57405181491923,2.44193344099007,0.0958934637263219));
+#671=CARTESIAN_POINT('Ctrl Pts',(3.57060735545785,2.44815342478395,0.0958942777568617));
+#672=CARTESIAN_POINT('Ctrl Pts',(3.56673490756645,2.45458262823042,0.0973022246071734));
+#673=CARTESIAN_POINT('Ctrl Pts',(3.5591975258203,2.46615695607239,0.10301367355354));
+#674=CARTESIAN_POINT('Ctrl Pts',(3.55554399032783,2.47130978891277,0.107316588463685));
+#675=CARTESIAN_POINT('Ctrl Pts',(3.5495893002736,2.47934180855009,0.117239123735973));
+#676=CARTESIAN_POINT('Ctrl Pts',(3.54689090054097,2.48276011450028,0.123525550590169));
+#677=CARTESIAN_POINT('Ctrl Pts',(3.54325535463351,2.48726703416617,0.137316325945552));
+#678=CARTESIAN_POINT('Ctrl Pts',(3.54233152907069,2.48836255817155,0.144821923606972));
+#679=CARTESIAN_POINT('Ctrl Pts',(3.54233152907069,2.48836255817155,0.151867355631928));
+#680=CARTESIAN_POINT('Origin',(2.76701476774245,2.61151356419732,1.44616178556023));
+#681=CARTESIAN_POINT('',(2.82245433305252,2.64416835491297,1.44635468642023));
+#682=CARTESIAN_POINT('',(2.79205576601093,2.5968284834495,1.50233921159134));
+#683=CARTESIAN_POINT('Ctrl Pts',(2.82245433305252,2.64416835491297,1.44635468642023));
+#684=CARTESIAN_POINT('Ctrl Pts',(2.82245433305252,2.64416835491297,1.45338971244858));
+#685=CARTESIAN_POINT('Ctrl Pts',(2.82163149641403,2.64301918416998,1.4608908939751));
+#686=CARTESIAN_POINT('Ctrl Pts',(2.81834171003938,2.63831811964897,1.47468453917399));
+#687=CARTESIAN_POINT('Ctrl Pts',(2.81588109415499,2.63476279732928,1.48097734403436));
+#688=CARTESIAN_POINT('Ctrl Pts',(2.81033601277752,2.62648643576082,1.49091357345944));
+#689=CARTESIAN_POINT('Ctrl Pts',(2.80688218122812,2.6212120336169,1.49522060663043));
+#690=CARTESIAN_POINT('Ctrl Pts',(2.79954918534312,2.6095153895334,1.50093369282537));
+#691=CARTESIAN_POINT('Ctrl Pts',(2.79567592427976,2.60308936949127,1.50233958573673));
+#692=CARTESIAN_POINT('Ctrl Pts',(2.79212144707698,2.59694213896475,1.50233955787497));
+#693=CARTESIAN_POINT('Ctrl Pts',(2.79208861180617,2.5968853310849,1.5023394425025));
+#694=CARTESIAN_POINT('Ctrl Pts',(2.7920557660112,2.59682848344996,1.50233921159134));
+#695=CARTESIAN_POINT('Ctrl Pts',(2.7920557660112,2.59682848344996,1.50233921159134));
+#696=CARTESIAN_POINT('Ctrl Pts',(2.78856475155789,2.59078643406796,1.50231466920465));
+#697=CARTESIAN_POINT('Ctrl Pts',(2.78496555735473,2.58428940273574,1.50090702071099));
+#698=CARTESIAN_POINT('Ctrl Pts',(2.7785169260301,2.57215630751218,1.49522048021271));
+#699=CARTESIAN_POINT('Ctrl Pts',(2.77566884894633,2.56653204050654,1.49091335151102));
+#700=CARTESIAN_POINT('Ctrl Pts',(2.77126242286671,2.55759808367841,1.48097689114612));
+#701=CARTESIAN_POINT('Ctrl Pts',(2.76940878980327,2.55369230509702,1.47468396846422));
+#702=CARTESIAN_POINT('Ctrl Pts',(2.76697590156048,2.54849656016389,1.46089026144819));
+#703=CARTESIAN_POINT('Ctrl Pts',(2.76639051131046,2.54721035809221,1.4533891422282));
+#704=CARTESIAN_POINT('Ctrl Pts',(2.76639051131046,2.54721035809221,1.43931668785405));
+#705=CARTESIAN_POINT('Ctrl Pts',(2.76697629210924,2.54849741162269,1.43181292064984));
+#706=CARTESIAN_POINT('Ctrl Pts',(2.76940970780332,2.55369424820275,1.41801311379398));
+#707=CARTESIAN_POINT('Ctrl Pts',(2.77126345144159,2.55760021777412,1.41171671617246));
+#708=CARTESIAN_POINT('Ctrl Pts',(2.77566950992004,2.56653333192945,1.40177454255664));
+#709=CARTESIAN_POINT('Ctrl Pts',(2.77851705600564,2.57215654501182,1.3974639367319));
+#710=CARTESIAN_POINT('Ctrl Pts',(2.78499535191873,2.58434546823553,1.39174524619089));
+#711=CARTESIAN_POINT('Ctrl Pts',(2.78863235668074,2.59090799054573,1.39033745479891));
+#712=CARTESIAN_POINT('Ctrl Pts',(2.795676359005,2.60309012131948,1.3903375100133));
+#713=CARTESIAN_POINT('Ctrl Pts',(2.79954976839319,2.60951633321585,1.39174548389609));
+#714=CARTESIAN_POINT('Ctrl Pts',(2.80688226906995,2.62121216005295,1.39746448503642));
+#715=CARTESIAN_POINT('Ctrl Pts',(2.81033547918105,2.62648560763612,1.40177521249922));
+#716=CARTESIAN_POINT('Ctrl Pts',(2.81587993660705,2.63476110131388,1.41171739708268));
+#717=CARTESIAN_POINT('Ctrl Pts',(2.81834059251326,2.63831651077573,1.41801366939315));
+#718=CARTESIAN_POINT('Ctrl Pts',(2.82163097241694,2.64301844732068,1.43181332808095));
+#719=CARTESIAN_POINT('Ctrl Pts',(2.82245433305252,2.64416835491297,1.43931707895464));
+#720=CARTESIAN_POINT('Ctrl Pts',(2.82245433305252,2.64416835491297,1.44635468642023));
+#721=CARTESIAN_POINT('',(3.05186180810693,2.44682568844317,1.50416568938731));
+#722=CARTESIAN_POINT('',(2.76662108856441,2.61151356419732,1.50216040176371));
+#723=CARTESIAN_POINT('',(3.02846279036647,2.39589911823268,1.4481966548418));
+#724=CARTESIAN_POINT('Ctrl Pts',(3.02846279036647,2.39589911823268,1.4481966548418));
+#725=CARTESIAN_POINT('Ctrl Pts',(3.02846279036647,2.39589911823268,1.45524303581302));
+#726=CARTESIAN_POINT('Ctrl Pts',(3.02892847973479,2.39725963404085,1.46274786166799));
+#727=CARTESIAN_POINT('Ctrl Pts',(3.03092751835573,2.4027086121763,1.47653388994032));
+#728=CARTESIAN_POINT('Ctrl Pts',(3.0324736131507,2.40678877666812,1.48281651971276));
+#729=CARTESIAN_POINT('Ctrl Pts',(3.03630347240917,2.41603959207784,1.49273678153202));
+#730=CARTESIAN_POINT('Ctrl Pts',(3.03884670801637,2.42183143663468,1.49704080128731));
+#731=CARTESIAN_POINT('Ctrl Pts',(3.0448747500078,2.43420504313338,1.50272919433397));
+#732=CARTESIAN_POINT('Ctrl Pts',(3.04836241318557,2.44077355598438,1.50414108808498));
+#733=CARTESIAN_POINT('Ctrl Pts',(3.05186180810796,2.44682568844496,1.50416568938732));
+#734=CARTESIAN_POINT('Ctrl Pts',(3.05186180810796,2.44682568844496,1.50416568938732));
+#735=CARTESIAN_POINT('Ctrl Pts',(3.05189467151754,2.44688252504451,1.50416592042231));
+#736=CARTESIAN_POINT('Ctrl Pts',(3.05192753409807,2.44693931715384,1.5041660359894));
+#737=CARTESIAN_POINT('Ctrl Pts',(3.05549307318385,2.45309651797154,1.50416609182412));
+#738=CARTESIAN_POINT('Ctrl Pts',(3.05949272648003,2.45945729215264,1.50275554249609));
+#739=CARTESIAN_POINT('Ctrl Pts',(3.06726211406898,2.47090000058511,1.49703998993087));
+#740=CARTESIAN_POINT('Ctrl Pts',(3.07102068491619,2.47598990109039,1.49273576869316));
+#741=CARTESIAN_POINT('Ctrl Pts',(3.07713947921482,2.48391786421128,1.48281584907568));
+#742=CARTESIAN_POINT('Ctrl Pts',(3.07990969382691,2.48729066661856,1.4765338847846));
+#743=CARTESIAN_POINT('Ctrl Pts',(3.08364229551088,2.4917382366668,1.46274871343886));
+#744=CARTESIAN_POINT('Ctrl Pts',(3.08459108470655,2.49281989086178,1.45524405058708));
+#745=CARTESIAN_POINT('Ctrl Pts',(3.08459108470655,2.49281989086178,1.44114560442679));
+#746=CARTESIAN_POINT('Ctrl Pts',(3.08364102623755,2.49173677203557,1.43363553541458));
+#747=CARTESIAN_POINT('Ctrl Pts',(3.07990688228821,2.48728726871891,1.4198378612847));
+#748=CARTESIAN_POINT('Ctrl Pts',(3.07713644913755,2.48391408293792,1.413548758909));
+#749=CARTESIAN_POINT('Ctrl Pts',(3.07101894864862,2.47598750660055,1.40361706911682));
+#750=CARTESIAN_POINT('Ctrl Pts',(3.06726181813654,2.47089954033593,1.39930569540551));
+#751=CARTESIAN_POINT('Ctrl Pts',(3.05949369047113,2.45945873631261,1.39357864214337));
+#752=CARTESIAN_POINT('Ctrl Pts',(3.05549382535249,2.45309781686443,1.39216401610907));
+#753=CARTESIAN_POINT('Ctrl Pts',(3.04842742479024,2.44089510465926,1.39216390545245));
+#754=CARTESIAN_POINT('Ctrl Pts',(3.04490177140137,2.43426060158363,1.39357810194522));
+#755=CARTESIAN_POINT('Ctrl Pts',(3.03884632232277,2.42183055257612,1.39930479409509));
+#756=CARTESIAN_POINT('Ctrl Pts',(3.03630397279881,2.41604065251144,1.40361626152671));
+#757=CARTESIAN_POINT('Ctrl Pts',(3.03247488514606,2.40679199725877,1.41354851123259));
+#758=CARTESIAN_POINT('Ctrl Pts',(3.03092875177552,2.40271190054919,1.41983794036462));
+#759=CARTESIAN_POINT('Ctrl Pts',(3.02892905237636,2.39726126856286,1.43363562304748));
+#760=CARTESIAN_POINT('Ctrl Pts',(3.02846279036647,2.39589911823268,1.44114534472158));
+#761=CARTESIAN_POINT('Ctrl Pts',(3.02846279036647,2.39589911823268,1.4481966548418));
+#762=CARTESIAN_POINT('Origin',(2.7761537486611,2.61151356419732,0.146193909407991));
+#763=CARTESIAN_POINT('',(2.82512800129289,2.64790119716913,0.146341358091604));
+#764=CARTESIAN_POINT('',(2.79435691776759,2.60077640352625,0.20232326441259));
+#765=CARTESIAN_POINT('Ctrl Pts',(2.82512800129289,2.64790119716913,0.146341358091604));
+#766=CARTESIAN_POINT('Ctrl Pts',(2.82512800129289,2.64790119716913,0.153375931693926));
+#767=CARTESIAN_POINT('Ctrl Pts',(2.82429584214487,2.6467575979645,0.160876252503433));
+#768=CARTESIAN_POINT('Ctrl Pts',(2.82096877577344,2.64207984092149,0.174667606015805));
+#769=CARTESIAN_POINT('Ctrl Pts',(2.81848023834214,2.63854227254713,0.180959017649938));
+#770=CARTESIAN_POINT('Ctrl Pts',(2.81287029335679,2.63030595019336,0.190895221487007));
+#771=CARTESIAN_POINT('Ctrl Pts',(2.80937464372761,2.6250556200158,0.195203072922344));
+#772=CARTESIAN_POINT('Ctrl Pts',(2.8019495655957,2.6134104754991,0.200917545986461));
+#773=CARTESIAN_POINT('Ctrl Pts',(2.79802600182977,2.60701182779645,0.202323974032197));
+#774=CARTESIAN_POINT('Ctrl Pts',(2.79442346470364,2.60088955922345,0.202323616783064));
+#775=CARTESIAN_POINT('Ctrl Pts',(2.79439019665512,2.60083300122307,0.202323498368433));
+#776=CARTESIAN_POINT('Ctrl Pts',(2.7943569177738,2.600776403537,0.202323264412634));
+#777=CARTESIAN_POINT('Ctrl Pts',(2.7943569177738,2.600776403537,0.202323264412634));
+#778=CARTESIAN_POINT('Ctrl Pts',(2.79082057945818,2.5947621218704,0.20229840339494));
+#779=CARTESIAN_POINT('Ctrl Pts',(2.78717258148779,2.58829374259048,0.200890888288985));
+#780=CARTESIAN_POINT('Ctrl Pts',(2.78063310413149,2.57621283376751,0.195204139932007));
+#781=CARTESIAN_POINT('Ctrl Pts',(2.77774307977205,2.57061211421537,0.190896622990145));
+#782=CARTESIAN_POINT('Ctrl Pts',(2.77327022749279,2.56171527701206,0.180958967474332));
+#783=CARTESIAN_POINT('Ctrl Pts',(2.7713878409117,2.55782586187217,0.174665298814503));
+#784=CARTESIAN_POINT('Ctrl Pts',(2.76891689677483,2.55265215430413,0.160870987339545));
+#785=CARTESIAN_POINT('Ctrl Pts',(2.76832220882138,2.5513715879345,0.153370046084126));
+#786=CARTESIAN_POINT('Ctrl Pts',(2.76832220882138,2.5513715879345,0.13929845184918));
+#787=CARTESIAN_POINT('Ctrl Pts',(2.76891733704413,2.55265309773035,0.131794618299873));
+#788=CARTESIAN_POINT('Ctrl Pts',(2.77138907879071,2.55782843216865,0.117994032680901));
+#789=CARTESIAN_POINT('Ctrl Pts',(2.7732717987579,2.56171848419141,0.1116969604718));
+#790=CARTESIAN_POINT('Ctrl Pts',(2.77774459730809,2.57061505085647,0.101754786091008));
+#791=CARTESIAN_POINT('Ctrl Pts',(2.7806340445855,2.5762145985393,0.0974448326775918));
+#792=CARTESIAN_POINT('Ctrl Pts',(2.78720334673154,2.58835055033045,0.0917279080641825));
+#793=CARTESIAN_POINT('Ctrl Pts',(2.79088942802188,2.59488370252995,0.0903211906000097));
+#794=CARTESIAN_POINT('Ctrl Pts',(2.79802626139351,2.6070122689075,0.090321898331101));
+#795=CARTESIAN_POINT('Ctrl Pts',(2.80194971410995,2.61341069441574,0.09173095500954));
+#796=CARTESIAN_POINT('Ctrl Pts',(2.80937379162173,2.6250542976177,0.0974518609747286));
+#797=CARTESIAN_POINT('Ctrl Pts',(2.81286857613977,2.63030336349984,0.101763373568879));
+#798=CARTESIAN_POINT('Ctrl Pts',(2.8184780752317,2.63853916221753,0.111705688485218));
+#799=CARTESIAN_POINT('Ctrl Pts',(2.82096697861449,2.64207729638801,0.118001154377899));
+#800=CARTESIAN_POINT('Ctrl Pts',(2.82429514344403,2.64675663337955,0.131799840659231));
+#801=CARTESIAN_POINT('Ctrl Pts',(2.82512800129289,2.64790119716913,0.139303464855054));
+#802=CARTESIAN_POINT('Ctrl Pts',(2.82512800129289,2.64790119716913,0.146341358091604));
+#803=CARTESIAN_POINT('',(3.05417928325853,2.45076418401232,0.204149856964623));
+#804=CARTESIAN_POINT('',(2.77576006948307,2.61151356419732,0.202192525611472));
+#805=CARTESIAN_POINT('',(3.03003274874208,2.40026920342306,0.148175567257292));
+#806=CARTESIAN_POINT('Ctrl Pts',(3.03003274874208,2.40026920342306,0.148175567257292));
+#807=CARTESIAN_POINT('Ctrl Pts',(3.03003274874208,2.40026920342306,0.155219615326092));
+#808=CARTESIAN_POINT('Ctrl Pts',(3.0305177012307,2.4016174861601,0.162723702296262));
+#809=CARTESIAN_POINT('Ctrl Pts',(3.03259527702783,2.40702108182381,0.176511982480063));
+#810=CARTESIAN_POINT('Ctrl Pts',(3.03420054129481,2.41106830083357,0.182797438866443));
+#811=CARTESIAN_POINT('Ctrl Pts',(3.03816635246852,2.42024604548588,0.192721647368312));
+#812=CARTESIAN_POINT('Ctrl Pts',(3.04079484785246,2.425991404355,0.197026476777187));
+#813=CARTESIAN_POINT('Ctrl Pts',(3.04700569708755,2.43826028149187,0.20271410942886));
+#814=CARTESIAN_POINT('Ctrl Pts',(3.05059070949344,2.44477040111751,0.204124628732818));
+#815=CARTESIAN_POINT('Ctrl Pts',(3.05417928328357,2.4507641840557,0.204149856964799));
+#816=CARTESIAN_POINT('Ctrl Pts',(3.05417928328357,2.4507641840557,0.204149856964799));
+#817=CARTESIAN_POINT('Ctrl Pts',(3.05421301303892,2.45082052087471,0.204150094090226));
+#818=CARTESIAN_POINT('Ctrl Pts',(3.05424674125713,2.45087681315931,0.204150215741508));
+#819=CARTESIAN_POINT('Ctrl Pts',(3.05790800451698,2.45698290973559,0.204150931857922));
+#820=CARTESIAN_POINT('Ctrl Pts',(3.06200680762706,2.46328598098478,0.202739949040806));
+#821=CARTESIAN_POINT('Ctrl Pts',(3.0699577668047,2.4746193926361,0.197026890848492));
+#822=CARTESIAN_POINT('Ctrl Pts',(3.07379896814154,2.47965787921492,0.1927257379497));
+#823=CARTESIAN_POINT('Ctrl Pts',(3.08005090856056,2.48750598750913,0.182811979335477));
+#824=CARTESIAN_POINT('Ctrl Pts',(3.08288113200521,2.49084551617706,0.176532065069204));
+#825=CARTESIAN_POINT('Ctrl Pts',(3.08669517447325,2.49524986597752,0.162746079379626));
+#826=CARTESIAN_POINT('Ctrl Pts',(3.08766512284893,2.49632157373514,0.15523837502906));
+#827=CARTESIAN_POINT('Ctrl Pts',(3.08766512284893,2.49632157373514,0.141133145795044));
+#828=CARTESIAN_POINT('Ctrl Pts',(3.08669468783438,2.49524929742456,0.133622910971993));
+#829=CARTESIAN_POINT('Ctrl Pts',(3.08288220039131,2.49084675651441,0.119828381984534));
+#830=CARTESIAN_POINT('Ctrl Pts',(3.0800540551805,2.48750970535404,0.113542414518033));
+#831=CARTESIAN_POINT('Ctrl Pts',(3.07380544185441,2.47966623762208,0.103611910802122));
+#832=CARTESIAN_POINT('Ctrl Pts',(3.06996452185292,2.47462861492305,0.0992988820269599));
+#833=CARTESIAN_POINT('Ctrl Pts',(3.0620116625498,2.46329330712459,0.0935667554827779));
+#834=CARTESIAN_POINT('Ctrl Pts',(3.05791066348292,2.45698734424404,0.0921488566511604));
+#835=CARTESIAN_POINT('Ctrl Pts',(3.05065926687557,2.44489377848409,0.0921474383308249));
+#836=CARTESIAN_POINT('Ctrl Pts',(3.0470365694558,2.43832092605836,0.0935575508325125));
+#837=CARTESIAN_POINT('Ctrl Pts',(3.04079906105907,2.42600006730927,0.0992765102067774));
+#838=CARTESIAN_POINT('Ctrl Pts',(3.03817178907305,2.42025796809222,0.103584484060531));
+#839=CARTESIAN_POINT('Ctrl Pts',(3.03420505039581,2.41107939358823,0.113516126973044));
+#840=CARTESIAN_POINT('Ctrl Pts',(3.03259848435029,2.4070292682282,0.119809279130587));
+#841=CARTESIAN_POINT('Ctrl Pts',(3.03051863870651,2.40162007971027,0.133612605560334));
+#842=CARTESIAN_POINT('Ctrl Pts',(3.03003274874208,2.40026920342306,0.141124083849746));
+#843=CARTESIAN_POINT('Ctrl Pts',(3.03003274874208,2.40026920342306,0.148175567257293));
+#844=CARTESIAN_POINT('Origin',(3.31192525404851,1.69665853469879,1.45));
+#845=CARTESIAN_POINT('',(3.31157285126126,1.69665853469879,1.49999875810733));
+#846=CARTESIAN_POINT('',(3.31157285126126,1.69665853469879,1.40000124189267));
+#847=CARTESIAN_POINT('Ctrl Pts',(3.31157285126126,1.69665853469879,1.49999875810733));
+#848=CARTESIAN_POINT('Ctrl Pts',(3.31169046027641,1.69665853469879,1.49999958704282));
+#849=CARTESIAN_POINT('Ctrl Pts',(3.31180792996474,1.69665856927967,1.5));
+#850=CARTESIAN_POINT('Ctrl Pts',(3.31820660619016,1.69666232746588,1.5));
+#851=CARTESIAN_POINT('Ctrl Pts',(3.32490458661711,1.69677501345223,1.49874405536234));
+#852=CARTESIAN_POINT('Ctrl Pts',(3.33722272910241,1.69717537563754,1.49364039137103));
+#853=CARTESIAN_POINT('Ctrl Pts',(3.34284313997528,1.69745745697138,1.48979283519587));
+#854=CARTESIAN_POINT('Ctrl Pts',(3.35171831942725,1.69798658506927,1.48091756973493));
+#855=CARTESIAN_POINT('Ctrl Pts',(3.35556579588885,1.69826805032716,1.47529719646578));
+#856=CARTESIAN_POINT('Ctrl Pts',(3.3606693440454,1.69866515231094,1.46297916438919));
+#857=CARTESIAN_POINT('Ctrl Pts',(3.36192525404851,1.69877507152762,1.45628125493767));
+#858=CARTESIAN_POINT('Ctrl Pts',(3.36192525404851,1.69877507152762,1.44371874506233));
+#859=CARTESIAN_POINT('Ctrl Pts',(3.3606693440454,1.69866515231094,1.43702083561081));
+#860=CARTESIAN_POINT('Ctrl Pts',(3.35556579588885,1.69826805032716,1.42470280353421));
+#861=CARTESIAN_POINT('Ctrl Pts',(3.35171831942725,1.69798658506927,1.41908243026507));
+#862=CARTESIAN_POINT('Ctrl Pts',(3.34284313997528,1.69745745697138,1.41020716480413));
+#863=CARTESIAN_POINT('Ctrl Pts',(3.33722272910241,1.69717537563754,1.40635960862897));
+#864=CARTESIAN_POINT('Ctrl Pts',(3.32490458661711,1.69677501345223,1.40125594463766));
+#865=CARTESIAN_POINT('Ctrl Pts',(3.31820660619016,1.69666232746588,1.4));
+#866=CARTESIAN_POINT('Ctrl Pts',(3.31180792996474,1.69665856927967,1.4));
+#867=CARTESIAN_POINT('Ctrl Pts',(3.31169046027641,1.69665853469879,1.40000041295718));
+#868=CARTESIAN_POINT('Ctrl Pts',(3.31157285126126,1.69665853469879,1.40000124189267));
+#869=CARTESIAN_POINT('',(3.26192525404851,1.69871613271428,1.45));
+#870=CARTESIAN_POINT('Ctrl Pts',(3.26192525404851,1.69871613271428,1.45));
+#871=CARTESIAN_POINT('Ctrl Pts',(3.26192525404851,1.69871613271428,1.45628123042362));
+#872=CARTESIAN_POINT('Ctrl Pts',(3.26318115305209,1.69860770614295,1.46297916339015));
+#873=CARTESIAN_POINT('Ctrl Pts',(3.26828477934519,1.69821664712561,1.47529733295916));
+#874=CARTESIAN_POINT('Ctrl Pts',(3.27213234911813,1.6979397296386,1.48091781558889));
+#875=CARTESIAN_POINT('Ctrl Pts',(3.28100773640093,1.69742107445212,1.48979311806962));
+#876=CARTESIAN_POINT('Ctrl Pts',(3.28662818902835,1.6971456200459,1.49364062060169));
+#877=CARTESIAN_POINT('Ctrl Pts',(3.29883122728901,1.69676336321912,1.49869647692067));
+#878=CARTESIAN_POINT('Ctrl Pts',(3.30539409317694,1.69665853469879,1.49995520879425));
+#879=CARTESIAN_POINT('Ctrl Pts',(3.31157285126126,1.69665853469879,1.49999875810733));
+#880=CARTESIAN_POINT('',(3.26192525404851,2.00079519447057,1.45));
+#881=CARTESIAN_POINT('',(3.26192525404851,1.69665853469879,1.45));
+#882=CARTESIAN_POINT('',(3.36192525404851,2.00091432844354,1.45));
+#883=CARTESIAN_POINT('Ctrl Pts',(3.36192525404851,2.00091432844354,1.45));
+#884=CARTESIAN_POINT('Ctrl Pts',(3.36192525404851,2.00091432844354,1.45629088104688));
+#885=CARTESIAN_POINT('Ctrl Pts',(3.36066559905479,2.00069133881841,1.46299278028855));
+#886=CARTESIAN_POINT('Ctrl Pts',(3.35555946611639,1.9998895057296,1.47530788818283));
+#887=CARTESIAN_POINT('Ctrl Pts',(3.35171362369578,1.99932261964193,1.48092213594729));
+#888=CARTESIAN_POINT('Ctrl Pts',(3.34284875164419,1.99825989574378,1.48978735302757));
+#889=CARTESIAN_POINT('Ctrl Pts',(3.33723431427349,1.99769437414139,1.49363358756899));
+#890=CARTESIAN_POINT('Ctrl Pts',(3.32491862782502,1.99689200850241,1.49874023745499));
+#891=CARTESIAN_POINT('Ctrl Pts',(3.31821639601988,1.99666613173672,1.5));
+#892=CARTESIAN_POINT('Ctrl Pts',(3.30563507720379,1.9966513527538,1.5));
+#893=CARTESIAN_POINT('Ctrl Pts',(3.29893329195044,1.99686142242674,1.49874058322683));
+#894=CARTESIAN_POINT('Ctrl Pts',(3.28661784846628,1.99763459782505,1.49363451317523));
+#895=CARTESIAN_POINT('Ctrl Pts',(3.28100324060302,1.99818672961726,1.48978849459286));
+#896=CARTESIAN_POINT('Ctrl Pts',(3.27213752896682,1.99922824265155,1.48092312310724));
+#897=CARTESIAN_POINT('Ctrl Pts',(3.26829130889454,1.99978586366611,1.47530843205661));
+#898=CARTESIAN_POINT('Ctrl Pts',(3.26318486186508,2.00057530775391,1.46299276637732));
+#899=CARTESIAN_POINT('Ctrl Pts',(3.26192525404851,2.00079519447057,1.45629077282522));
+#900=CARTESIAN_POINT('Ctrl Pts',(3.26192525404851,2.00079519447057,1.45));
+#901=CARTESIAN_POINT('Ctrl Pts',(3.26192525404851,2.00079519447057,1.45));
+#902=CARTESIAN_POINT('Ctrl Pts',(3.26192525404851,2.00079519447057,1.44370922717478));
+#903=CARTESIAN_POINT('Ctrl Pts',(3.26318486186508,2.00057530775391,1.43700723362268));
+#904=CARTESIAN_POINT('Ctrl Pts',(3.26829130889454,1.99978586366611,1.42469156794339));
+#905=CARTESIAN_POINT('Ctrl Pts',(3.27213752896682,1.99922824265155,1.41907687689276));
+#906=CARTESIAN_POINT('Ctrl Pts',(3.28100324060302,1.99818672961726,1.41021150540714));
+#907=CARTESIAN_POINT('Ctrl Pts',(3.28661784846628,1.99763459782505,1.40636548682477));
+#908=CARTESIAN_POINT('Ctrl Pts',(3.29893329195044,1.99686142242674,1.40125941677317));
+#909=CARTESIAN_POINT('Ctrl Pts',(3.30563507720379,1.9966513527538,1.4));
+#910=CARTESIAN_POINT('Ctrl Pts',(3.31821639601988,1.99666613173672,1.4));
+#911=CARTESIAN_POINT('Ctrl Pts',(3.32491862782502,1.99689200850241,1.40125976254501));
+#912=CARTESIAN_POINT('Ctrl Pts',(3.33723431427349,1.99769437414139,1.40636641243101));
+#913=CARTESIAN_POINT('Ctrl Pts',(3.34284875164419,1.99825989574378,1.41021264697242));
+#914=CARTESIAN_POINT('Ctrl Pts',(3.35171362369578,1.99932261964193,1.41907786405271));
+#915=CARTESIAN_POINT('Ctrl Pts',(3.35555946611639,1.9998895057296,1.42469211181717));
+#916=CARTESIAN_POINT('Ctrl Pts',(3.36066559905479,2.00069133881841,1.43700721971145));
+#917=CARTESIAN_POINT('Ctrl Pts',(3.36192525404851,2.00091432844354,1.44370911895312));
+#918=CARTESIAN_POINT('Ctrl Pts',(3.36192525404851,2.00091432844354,1.45));
+#919=CARTESIAN_POINT('Ctrl Pts',(3.31157285126126,1.69665853469879,1.40000124189267));
+#920=CARTESIAN_POINT('Ctrl Pts',(3.30539409317694,1.69665853469879,1.40004479120575));
+#921=CARTESIAN_POINT('Ctrl Pts',(3.29883122728901,1.69676336321912,1.40130352307933));
+#922=CARTESIAN_POINT('Ctrl Pts',(3.28662818902835,1.6971456200459,1.40635937939831));
+#923=CARTESIAN_POINT('Ctrl Pts',(3.28100773640093,1.69742107445212,1.41020688193038));
+#924=CARTESIAN_POINT('Ctrl Pts',(3.27213234911813,1.6979397296386,1.41908218441111));
+#925=CARTESIAN_POINT('Ctrl Pts',(3.26828477934519,1.69821664712561,1.42470266704084));
+#926=CARTESIAN_POINT('Ctrl Pts',(3.26318115305209,1.69860770614295,1.43702083660985));
+#927=CARTESIAN_POINT('Ctrl Pts',(3.26192525404851,1.69871613271428,1.44371876957638));
+#928=CARTESIAN_POINT('Ctrl Pts',(3.26192525404851,1.69871613271428,1.45));
+#929=CARTESIAN_POINT('Origin',(3.31192525404851,1.69665853469879,0.15));
+#930=CARTESIAN_POINT('',(3.31157285126126,1.69665853469879,0.199998758107332));
+#931=CARTESIAN_POINT('',(3.31157285126126,1.69665853469879,0.100001241892668));
+#932=CARTESIAN_POINT('Ctrl Pts',(3.31157285126126,1.69665853469879,0.199998758107332));
+#933=CARTESIAN_POINT('Ctrl Pts',(3.31169046027641,1.69665853469879,0.199999587042816));
+#934=CARTESIAN_POINT('Ctrl Pts',(3.31180792996474,1.69665856927967,0.2));
+#935=CARTESIAN_POINT('Ctrl Pts',(3.31820660619016,1.69666232746588,0.2));
+#936=CARTESIAN_POINT('Ctrl Pts',(3.32490458661711,1.69677501345223,0.198744055362335));
+#937=CARTESIAN_POINT('Ctrl Pts',(3.33722272910241,1.69717537563754,0.19364039137103));
+#938=CARTESIAN_POINT('Ctrl Pts',(3.34284313997528,1.69745745697138,0.189792835195874));
+#939=CARTESIAN_POINT('Ctrl Pts',(3.35171831942725,1.69798658506927,0.180917569734931));
+#940=CARTESIAN_POINT('Ctrl Pts',(3.35556579588885,1.69826805032716,0.175297196465785));
+#941=CARTESIAN_POINT('Ctrl Pts',(3.3606693440454,1.69866515231094,0.162979164389189));
+#942=CARTESIAN_POINT('Ctrl Pts',(3.36192525404851,1.69877507152762,0.156281254937674));
+#943=CARTESIAN_POINT('Ctrl Pts',(3.36192525404851,1.69877507152762,0.143718745062326));
+#944=CARTESIAN_POINT('Ctrl Pts',(3.3606693440454,1.69866515231094,0.13702083561081));
+#945=CARTESIAN_POINT('Ctrl Pts',(3.35556579588885,1.69826805032716,0.124702803534215));
+#946=CARTESIAN_POINT('Ctrl Pts',(3.35171831942725,1.69798658506927,0.119082430265069));
+#947=CARTESIAN_POINT('Ctrl Pts',(3.34284313997528,1.69745745697138,0.110207164804126));
+#948=CARTESIAN_POINT('Ctrl Pts',(3.33722272910241,1.69717537563754,0.106359608628969));
+#949=CARTESIAN_POINT('Ctrl Pts',(3.32490458661711,1.69677501345223,0.101255944637665));
+#950=CARTESIAN_POINT('Ctrl Pts',(3.31820660619016,1.69666232746588,0.0999999999999999));
+#951=CARTESIAN_POINT('Ctrl Pts',(3.31180792996474,1.69665856927967,0.0999999999999999));
+#952=CARTESIAN_POINT('Ctrl Pts',(3.31169046027641,1.69665853469879,0.100000412957184));
+#953=CARTESIAN_POINT('Ctrl Pts',(3.31157285126126,1.69665853469879,0.100001241892668));
+#954=CARTESIAN_POINT('',(3.26192525404851,1.69871613271428,0.15));
+#955=CARTESIAN_POINT('Ctrl Pts',(3.26192525404851,1.69871613271428,0.15));
+#956=CARTESIAN_POINT('Ctrl Pts',(3.26192525404851,1.69871613271428,0.15628123042362));
+#957=CARTESIAN_POINT('Ctrl Pts',(3.26318115305209,1.69860770614295,0.162979163390146));
+#958=CARTESIAN_POINT('Ctrl Pts',(3.26828477934519,1.69821664712561,0.175297332959157));
+#959=CARTESIAN_POINT('Ctrl Pts',(3.27213234911813,1.6979397296386,0.180917815588894));
+#960=CARTESIAN_POINT('Ctrl Pts',(3.28100773640093,1.69742107445212,0.189793118069621));
+#961=CARTESIAN_POINT('Ctrl Pts',(3.28662818902835,1.6971456200459,0.19364062060169));
+#962=CARTESIAN_POINT('Ctrl Pts',(3.29883122728901,1.69676336321912,0.198696476920667));
+#963=CARTESIAN_POINT('Ctrl Pts',(3.30539409317694,1.69665853469879,0.199955208794248));
+#964=CARTESIAN_POINT('Ctrl Pts',(3.31157285126126,1.69665853469879,0.199998758107332));
+#965=CARTESIAN_POINT('',(3.26192525404851,2.00079519447057,0.15));
+#966=CARTESIAN_POINT('',(3.26192525404851,1.69665853469879,0.15));
+#967=CARTESIAN_POINT('',(3.36192525404851,2.00091432844354,0.15));
+#968=CARTESIAN_POINT('Ctrl Pts',(3.36192525404851,2.00091432844354,0.15));
+#969=CARTESIAN_POINT('Ctrl Pts',(3.36192525404851,2.00091432844354,0.15629088104688));
+#970=CARTESIAN_POINT('Ctrl Pts',(3.36066559905479,2.00069133881841,0.162992780288549));
+#971=CARTESIAN_POINT('Ctrl Pts',(3.35555946611639,1.9998895057296,0.175307888182829));
+#972=CARTESIAN_POINT('Ctrl Pts',(3.35171362369578,1.99932261964193,0.180922135947288));
+#973=CARTESIAN_POINT('Ctrl Pts',(3.34284875164419,1.99825989574378,0.189787353027575));
+#974=CARTESIAN_POINT('Ctrl Pts',(3.33723431427349,1.99769437414139,0.193633587568991));
+#975=CARTESIAN_POINT('Ctrl Pts',(3.32491862782502,1.99689200850241,0.198740237454992));
+#976=CARTESIAN_POINT('Ctrl Pts',(3.31821639601988,1.99666613173672,0.2));
+#977=CARTESIAN_POINT('Ctrl Pts',(3.30563507720379,1.9966513527538,0.2));
+#978=CARTESIAN_POINT('Ctrl Pts',(3.29893329195044,1.99686142242674,0.198740583226828));
+#979=CARTESIAN_POINT('Ctrl Pts',(3.28661784846628,1.99763459782505,0.193634513175227));
+#980=CARTESIAN_POINT('Ctrl Pts',(3.28100324060302,1.99818672961726,0.189788494592864));
+#981=CARTESIAN_POINT('Ctrl Pts',(3.27213752896682,1.99922824265155,0.180923123107237));
+#982=CARTESIAN_POINT('Ctrl Pts',(3.26829130889454,1.99978586366611,0.175308432056607));
+#983=CARTESIAN_POINT('Ctrl Pts',(3.26318486186508,2.00057530775391,0.162992766377315));
+#984=CARTESIAN_POINT('Ctrl Pts',(3.26192525404851,2.00079519447057,0.156290772825219));
+#985=CARTESIAN_POINT('Ctrl Pts',(3.26192525404851,2.00079519447057,0.15));
+#986=CARTESIAN_POINT('Ctrl Pts',(3.26192525404851,2.00079519447057,0.15));
+#987=CARTESIAN_POINT('Ctrl Pts',(3.26192525404851,2.00079519447057,0.143709227174781));
+#988=CARTESIAN_POINT('Ctrl Pts',(3.26318486186508,2.00057530775391,0.137007233622685));
+#989=CARTESIAN_POINT('Ctrl Pts',(3.26829130889454,1.99978586366611,0.124691567943393));
+#990=CARTESIAN_POINT('Ctrl Pts',(3.27213752896682,1.99922824265155,0.119076876892762));
+#991=CARTESIAN_POINT('Ctrl Pts',(3.28100324060302,1.99818672961726,0.110211505407136));
+#992=CARTESIAN_POINT('Ctrl Pts',(3.28661784846628,1.99763459782505,0.106365486824773));
+#993=CARTESIAN_POINT('Ctrl Pts',(3.29893329195044,1.99686142242674,0.101259416773172));
+#994=CARTESIAN_POINT('Ctrl Pts',(3.30563507720379,1.9966513527538,0.0999999999999998));
+#995=CARTESIAN_POINT('Ctrl Pts',(3.31821639601988,1.99666613173672,0.0999999999999998));
+#996=CARTESIAN_POINT('Ctrl Pts',(3.32491862782502,1.99689200850241,0.101259762545008));
+#997=CARTESIAN_POINT('Ctrl Pts',(3.33723431427349,1.99769437414139,0.106366412431009));
+#998=CARTESIAN_POINT('Ctrl Pts',(3.34284875164419,1.99825989574378,0.110212646972425));
+#999=CARTESIAN_POINT('Ctrl Pts',(3.35171362369578,1.99932261964193,0.119077864052712));
+#1000=CARTESIAN_POINT('Ctrl Pts',(3.35555946611639,1.9998895057296,0.124692111817171));
+#1001=CARTESIAN_POINT('Ctrl Pts',(3.36066559905479,2.00069133881841,0.13700721971145));
+#1002=CARTESIAN_POINT('Ctrl Pts',(3.36192525404851,2.00091432844354,0.14370911895312));
+#1003=CARTESIAN_POINT('Ctrl Pts',(3.36192525404851,2.00091432844354,0.15));
+#1004=CARTESIAN_POINT('Ctrl Pts',(3.31157285126126,1.69665853469879,0.100001241892667));
+#1005=CARTESIAN_POINT('Ctrl Pts',(3.30539409317694,1.69665853469879,0.100044791205752));
+#1006=CARTESIAN_POINT('Ctrl Pts',(3.29883122728901,1.69676336321912,0.101303523079333));
+#1007=CARTESIAN_POINT('Ctrl Pts',(3.28662818902835,1.6971456200459,0.106359379398309));
+#1008=CARTESIAN_POINT('Ctrl Pts',(3.28100773640093,1.69742107445212,0.110206881930379));
+#1009=CARTESIAN_POINT('Ctrl Pts',(3.27213234911813,1.6979397296386,0.119082184411105));
+#1010=CARTESIAN_POINT('Ctrl Pts',(3.26828477934519,1.69821664712561,0.124702667040843));
+#1011=CARTESIAN_POINT('Ctrl Pts',(3.26318115305209,1.69860770614295,0.137020836609853));
+#1012=CARTESIAN_POINT('Ctrl Pts',(3.26192525404851,1.69871613271428,0.14371876957638));
+#1013=CARTESIAN_POINT('Ctrl Pts',(3.26192525404851,1.69871613271428,0.15));
+#1014=CARTESIAN_POINT('Origin',(3.31157285126126,2.29665853469879,1.85));
+#1015=CARTESIAN_POINT('',(3.32657285126126,2.29665853469879,1.85));
+#1016=CARTESIAN_POINT('Origin',(3.31157285126126,2.29665853469879,1.85));
+#1017=CARTESIAN_POINT('',(3.32657285126126,2.29665853469879,1.81454482671904));
+#1018=CARTESIAN_POINT('',(3.32657285126126,2.29665853469879,1.85));
+#1019=CARTESIAN_POINT('Origin',(3.31157285126126,2.29665853469879,1.81454482671904));
+#1020=CARTESIAN_POINT('Origin',(3.31157285126126,2.29665853469879,0.02));
+#1021=CARTESIAN_POINT('',(3.87157285126126,2.29665853469879,0.));
+#1022=CARTESIAN_POINT('Origin',(3.31157285126126,2.29665853469879,0.));
+#1023=CARTESIAN_POINT('',(3.91157285126126,2.29665853469879,0.04));
+#1024=CARTESIAN_POINT('',(3.89157285126126,2.29665853469879,0.02));
+#1025=CARTESIAN_POINT('Origin',(3.31157285126126,2.29665853469879,0.04));
+#1026=CARTESIAN_POINT('Origin',(3.31157285126126,2.29665853469879,0.));
+#1027=CARTESIAN_POINT('',(3.91157285126126,2.29665853469879,1.56));
+#1028=CARTESIAN_POINT('Origin',(3.31157285126126,2.29665853469879,1.56));
+#1029=CARTESIAN_POINT('',(3.91157285126126,2.29665853469879,0.));
+#1030=CARTESIAN_POINT('Origin',(3.31157285126126,2.29665853469879,0.));
+#1031=CARTESIAN_POINT('',(3.01157285126126,2.29665853469879,0.));
+#1032=CARTESIAN_POINT('',(3.61157285126126,2.29665853469879,0.));
+#1033=CARTESIAN_POINT('Origin',(3.31157285126126,2.29665853469879,0.));
+#1034=CARTESIAN_POINT('Origin',(3.31157285126126,2.29665853469879,0.));
+#1035=CARTESIAN_POINT('Origin',(3.31157285126126,2.29665853469879,1.73660254037844));
+#1036=CARTESIAN_POINT('',(3.01157285126126,2.29665853469879,1.65));
+#1037=CARTESIAN_POINT('',(3.61157285126126,2.29665853469879,1.65));
+#1038=CARTESIAN_POINT('Origin',(3.31157285126126,2.29665853469879,1.65));
+#1039=CARTESIAN_POINT('',(3.46157285126126,2.29665853469879,1.73660254037844));
+#1040=CARTESIAN_POINT('Origin',(3.31157285126126,2.29665853469879,1.65));
+#1041=CARTESIAN_POINT('Origin',(3.31157285126126,2.29665853469879,0.825));
+#1042=CARTESIAN_POINT('',(3.61157285126126,2.29665853469879,0.825));
+#1043=CARTESIAN_POINT('Origin',(3.31157285126126,2.29665853469879,1.58));
+#1044=CARTESIAN_POINT('',(3.87157285126126,2.29665853469879,1.6));
+#1045=CARTESIAN_POINT('Origin',(3.31157285126126,2.29665853469879,1.6));
+#1046=CARTESIAN_POINT('',(3.89157285126126,2.29665853469879,1.58));
+#1047=CARTESIAN_POINT('Origin',(3.31157285126126,2.29665853469879,1.6));
+#1048=CARTESIAN_POINT('',(3.78007285126126,2.29665853469879,1.6));
+#1049=CARTESIAN_POINT('Origin',(3.31157285126126,2.29665853469879,1.6));
+#1050=CARTESIAN_POINT('Origin',(3.31157285126126,2.29665853469879,1.84));
+#1051=CARTESIAN_POINT('',(3.76007285126126,2.29665853469879,1.85));
+#1052=CARTESIAN_POINT('Origin',(3.31157285126126,2.29665853469879,1.85));
+#1053=CARTESIAN_POINT('',(3.78007285126126,2.29665853469879,1.83));
+#1054=CARTESIAN_POINT('',(3.77007285126126,2.29665853469879,1.84));
+#1055=CARTESIAN_POINT('Origin',(3.31157285126126,2.29665853469879,1.83));
+#1056=CARTESIAN_POINT('Origin',(3.31157285126126,2.29665853469879,1.6));
+#1057=CARTESIAN_POINT('',(3.78007285126126,2.29665853469879,1.6));
+#1058=CARTESIAN_POINT('Origin',(3.31157285126126,2.29665853469879,1.85));
+#1059=CARTESIAN_POINT('Origin',(3.31157285126126,1.69665853469879,1.45));
+#1060=CARTESIAN_POINT('Origin',(3.31157285126126,1.69665853469879,0.15));
+#1061=UNCERTAINTY_MEASURE_WITH_UNIT(LENGTH_MEASURE(0.000393700787401575),
+#1066,'DISTANCE_ACCURACY_VALUE',
+'Maximum model space distance between geometric entities at asserted c
+onnectivities');
+#1062=UNCERTAINTY_MEASURE_WITH_UNIT(LENGTH_MEASURE(0.000393700787401575),
+#1066,'DISTANCE_ACCURACY_VALUE',
+'Maximum model space distance between geometric entities at asserted c
+onnectivities');
+#1063=(
+GEOMETRIC_REPRESENTATION_CONTEXT(3)
+GLOBAL_UNCERTAINTY_ASSIGNED_CONTEXT((#1061))
+GLOBAL_UNIT_ASSIGNED_CONTEXT((#1066,#1071,#1070))
+REPRESENTATION_CONTEXT('','3D')
+);
+#1064=(
+GEOMETRIC_REPRESENTATION_CONTEXT(3)
+GLOBAL_UNCERTAINTY_ASSIGNED_CONTEXT((#1062))
+GLOBAL_UNIT_ASSIGNED_CONTEXT((#1066,#1071,#1070))
+REPRESENTATION_CONTEXT('','3D')
+);
+#1065=DIMENSIONAL_EXPONENTS(1.,0.,0.,0.,0.,0.,0.);
+#1066=(
+CONVERSION_BASED_UNIT('inch',#1069)
+LENGTH_UNIT()
+NAMED_UNIT(#1065)
+);
+#1067=(
+LENGTH_UNIT()
+NAMED_UNIT(*)
+SI_UNIT(.MILLI.,.METRE.)
+);
+#1068=(
+LENGTH_UNIT()
+NAMED_UNIT(*)
+SI_UNIT(.CENTI.,.METRE.)
+);
+#1069=LENGTH_MEASURE_WITH_UNIT(LENGTH_MEASURE(25.4),#1067);
+#1070=(
+NAMED_UNIT(*)
+SI_UNIT($,.STERADIAN.)
+SOLID_ANGLE_UNIT()
+);
+#1071=(
+NAMED_UNIT(*)
+PLANE_ANGLE_UNIT()
+SI_UNIT($,.RADIAN.)
+);
+#1072=SHAPE_DEFINITION_REPRESENTATION(#1073,#1074);
+#1073=PRODUCT_DEFINITION_SHAPE('',$,#1076);
+#1074=SHAPE_REPRESENTATION('',(#402),#1063);
+#1075=PRODUCT_DEFINITION_CONTEXT('part definition',#1080,'design');
+#1076=PRODUCT_DEFINITION('laserfocus','laserfocus_draft3',#1077,#1075);
+#1077=PRODUCT_DEFINITION_FORMATION('',$,#1082);
+#1078=PRODUCT_RELATED_PRODUCT_CATEGORY('laserfocus_draft3',
+'laserfocus_draft3',(#1082));
+#1079=APPLICATION_PROTOCOL_DEFINITION('international standard',
+'automotive_design',2009,#1080);
+#1080=APPLICATION_CONTEXT(
+'Core Data for Automotive Mechanical Design Process');
+#1081=PRODUCT_CONTEXT('part definition',#1080,'mechanical');
+#1082=PRODUCT('laserfocus','laserfocus_draft3',$,(#1081));
+#1083=PRESENTATION_STYLE_ASSIGNMENT((#1084));
+#1084=SURFACE_STYLE_USAGE(.BOTH.,#1085);
+#1085=SURFACE_SIDE_STYLE('',(#1086));
+#1086=SURFACE_STYLE_FILL_AREA(#1087);
+#1087=FILL_AREA_STYLE('',(#1088));
+#1088=FILL_AREA_STYLE_COLOUR('',#1089);
+#1089=COLOUR_RGB('',0.749019607843137,0.749019607843137,0.749019607843137);
+ENDSEC;
+END-ISO-10303-21;
diff --git a/2021-dean-protocol/laser-alignment-tool/laserfocus_draft3_specs.JPG b/2021-dean-protocol/laser-alignment-tool/laserfocus_draft3_specs.JPG
new file mode 100644
index 0000000..802172f
Binary files /dev/null and b/2021-dean-protocol/laser-alignment-tool/laserfocus_draft3_specs.JPG differ
diff --git a/2021-dean-protocol/laser-alignment-tool/originalDesign.pdf b/2021-dean-protocol/laser-alignment-tool/originalDesign.pdf
new file mode 100644
index 0000000..f6302a8
Binary files /dev/null and b/2021-dean-protocol/laser-alignment-tool/originalDesign.pdf differ