-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_chatbot.py
79 lines (63 loc) · 2.26 KB
/
train_chatbot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import nltk
nltk.download('punkt')
nltk.download('wordnet')
from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
import json
import pickle
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation, Dropout
from tensorflow.keras.optimizers import SGD
import random
words=[]
classes=[]
documents=[]
ignore_words=['?','!']
data_file=open('intents.json').read()
intents=json.loads(data_file)
for intent in intents['intents']:
for pattern in intent['patterns']:
# tokenizing words
w=nltk.word_tokenize(pattern)
words.extend(w)
documents.append((w,intent['tag']))
if intent['tag'] not in classes:
classes.append(intent['tag'])
words=[lemmatizer.lemmatize(w.lower()) for w in words if w not in ignore_words]
words=sorted(list(set(words)))
classes = sorted(list(set(classes)))
print(len(documents), "documents",documents)
print(len(classes), "classes", classes)
print(len(words), "unique lemmatized words", words)
pickle.dump(words, open('words.pkl','wb'))
pickle.dump(classes, open('classes.pkl','wb'))
# Creating Training Dataset
training = []
output_empty = [0]*len(classes)
for doc in documents:
bag=[]
pattern_words=doc[0]
pattern_words=[lemmatizer.lemmatize(word.lower()) for word in pattern_words]
for w in words:
bag.append(1) if w in pattern_words else bag.append(0)
output_row = list(output_empty)
output_row[classes.index(doc[1])]=1
training.append([bag,output_row])
random.shuffle(training)
training=np.array(training)
train_x=list(training[:,0])
train_y=list(training[:,1])
print("Training Data Created")
# Creating Model
model=Sequential()
model.add(Dense(128, input_shape=(len(train_x[0]),),activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(len(train_y[0]),activation='softmax'))
sgd=SGD(lr=0.01,decay=1e-6,momentum=0.9,nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
hist=model.fit(np.array(train_x), np.array(train_y), epochs=200,batch_size=5, verbose=1)
model.save('chatbot_model.h5',hist)
print("model created")