-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgan.m
181 lines (116 loc) · 4.12 KB
/
gan.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
function [permbest,fitbest]=gan(perm,tol,npop)
%% paramters setting
%number of groups
ncomp=3; %input('number of components?');
%grups of component A,B and C
%A=[9 50 175 375 256 135]; %input('enter groups of component A in a row');
% B=[9 50 175 375 256 135]; %input('enter groups of component B in a row');
% C=[9 50 175 375 256 135];%input('enter groups of component C in a row');
ngrp=size(perm(1,:)); % number of groups
nvar=ngrp(2);
% npop=input('Population size?'); % number of population
maxiter=1000; % max of iteration
pc=0.6; % percent of crossover
ncross=2.*round(npop*pc/2); % number of cross over offspring
pm=.08; % percent of mutation
%nmut=round(npop*pm); % number of mutation offsprig
% perm=[5 5 3 5 5 5; 3 3 3 4 3 3; 4 4 3 4 4 4];
%% initialization
tic
empty.par=[];
empty.fit=[];
pop=repmat(empty,npop,1);
for i=1:npop
pop(i).par=[randperm(nvar) randperm(nvar)];
counter1=zeros(1,nvar);
for s=1:nvar
l=perm(1,s);
counter1(l)=counter1(l)+1;
end
counter2=zeros(1,nvar);
for s=1:nvar
l=perm(2,s);
counter2(l)=counter2(l)+1;
end
% counter3=zeros(1,nvar);
% for s=1:nvar
% l=perm(3,s);
% counter3(l)=counter3(l)+1;
% end
for j=1:nvar*ncomp
if j<=nvar
counterperm=zeros(1,nvar);
counterpop=zeros(1,nvar);
for s=1:nvar
l=perm(1,s);
counterperm(l)=counterperm(l)+1;
h=pop(i).par(s);
counterpop(h)=counterpop(h)+1;
end
if ismember( pop(i).par(j),perm(1,:))==0 || counterperm(pop(i).par(j))-counterpop(pop(i).par(j))<0
avali=find(counter1>1,1,'first');
pop(i).par(j)=avali;
counter1(avali)=counter1(avali)-1;
end
elseif j<=2*nvar
counterperm=zeros(1,nvar);
counterpop=zeros(1,nvar);
for s=1:nvar
l=perm(2,s);
counterperm(l)=counterperm(l)+1;
h=pop(i).par(s+nvar);
counterpop(h)=counterpop(h)+1;
end
if ismember( pop(i).par(j),perm(2,:))==0 || counterperm(pop(i).par(j))-counterpop(pop(i).par(j))<0
avali=find(counter2>1,1,'first');
pop(i).par(j)=avali;
counter2(avali)=counter2(avali)-1;
end
end
end
pop(i).fit=fitness(pop(i).par,tol,nvar);
end
%% main loop
BEST=zeros(maxiter,1);
MEAN=zeros(maxiter,1);
for iter=1:maxiter
% crossover
crosspop=repmat(empty,ncross,1);
crosspop=crossovern(crosspop,pop,nvar,ncross);
% mutation (only for children)
crosspopmutated=mutation(crosspop,nvar,ncross, pm,tol);
% crosspopmutated1=crosspopmutated';
% merged
[pop]=[pop;crosspopmutated];
% selects
[~,index]=sort([pop.fit],'descend');
pop=pop(index);
pop=pop(1:npop);
gpop=pop(1); % global pop
BEST(iter)=-(log(gpop.fit))./.05;
MEAN(iter)=-(log(mean([pop.fit]))./.05);
% disp([ ' Iter = ' num2str(iter) ' BEST = ' num2str(BEST(iter))]);
if iter>100 && BEST(iter)==BEST(iter-100)
break
end
end
%% results
permbest=gpop.par;
fitbest=-(log(gpop.fit))./.05;
% disp(' ')
% disp([ ' Best par = ' num2str(gpop.par)])
% disp([ ' Best fitness = ' num2str(gpop.fit)])
% disp([ ' Time = ' num2str(toc)])
figure(1)
plot(BEST(1:iter),'r','LineWidth',2)
hold on
plot(MEAN(1:iter),'b','LineWidth',2)
xlabel('Iteration')
ylabel(' Fitness')
legend('BEST','MEAN')
title('GA for Selective Assembly')
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Abolfazl Rezaei Aderiani %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%