-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathvision.py
275 lines (239 loc) · 11.9 KB
/
vision.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import argparse
import os
import re
import gc
import chainer.functions as F
import chainer.links as L
import chainer
from chainer import training
from chainer.training import extensions
try:
import cupy as cp
except Exception as e:
None
import numpy as np
from lib.data import VisionDataset
from lib.utils import save_images_collage, mkdir, log, pre_process_image_tensor, post_process_image_tensor
ID = "vision"
class CVAE(chainer.Chain):
def __init__(self, n_latent):
self.n_latent = n_latent
super(CVAE, self).__init__(
e_c0=L.Convolution2D(None, 32, 4, 2),
e_c1=L.Convolution2D(None, 64, 4, 2),
e_c2=L.Convolution2D(None, 128, 4, 2),
e_c3=L.Convolution2D(None, 256, 4, 2),
e_mu=L.Linear(None, n_latent),
e_ln_var=L.Linear(None, n_latent),
d_l0=L.Linear(n_latent, 1024),
d_dc0=L.Deconvolution2D(None, 128, 5, 2),
d_dc1=L.Deconvolution2D(None, 64, 5, 2),
d_dc2=L.Deconvolution2D(None, 32, 6, 2),
d_dc3=L.Deconvolution2D(None, 3, 6, 2),
)
def __call__(self, frames, pre_process=False):
if len(frames.shape) == 3:
frames = F.expand_dims(frames, 0)
if pre_process:
frames = pre_process_image_tensor(frames)
frames_variational = self.decode(self.encode(frames, return_z=True))
if pre_process:
frames_variational = post_process_image_tensor(frames_variational)
return frames_variational
def encode(self, frames, return_z=False):
if len(frames.shape) == 3:
frames = F.expand_dims(frames, 0)
h = F.relu(self.e_c0(frames))
h = F.relu(self.e_c1(h))
h = F.relu(self.e_c2(h))
h = F.relu(self.e_c3(h))
h = F.reshape(h, (-1, 1024))
mu = self.e_mu(h)
ln_var = self.e_ln_var(h)
if return_z:
return F.gaussian(mu, ln_var)
else:
return mu, ln_var
def decode(self, z):
if len(z.shape) == 1:
z = F.expand_dims(z, 0)
h = self.d_l0(z)
h = F.reshape(h, (-1, 1024, 1, 1))
h = F.relu(self.d_dc0(h))
h = F.relu(self.d_dc1(h))
h = F.relu(self.d_dc2(h))
h = F.sigmoid(self.d_dc3(h))
return h
def get_loss_func(self, kl_tolerance=0.5):
self.kl_tolerance = kl_tolerance
def lf(frames):
mu, ln_var = self.encode(frames)
z = F.gaussian(mu, ln_var)
frames_flat = F.reshape(frames, (-1, frames.shape[1] * frames.shape[2] * frames.shape[3]))
variational_flat = F.reshape(self.decode(z), (-1, frames.shape[1] * frames.shape[2] * frames.shape[3]))
rec_loss = F.sum(F.square(frames_flat - variational_flat), axis=1) # l2 reconstruction loss
rec_loss = F.mean(rec_loss)
kl_loss = F.sum(F.gaussian_kl_divergence(mu, ln_var, reduce="no"), axis=1)
if self._cpu:
kl_tolerance = np.asarray(self.kl_tolerance * self.n_latent).astype(np.float32)
else:
kl_tolerance = cp.asarray(self.kl_tolerance * self.n_latent).astype(cp.float32)
kl_loss = F.maximum(kl_loss, F.broadcast_to(kl_tolerance, kl_loss.shape))
kl_loss = F.mean(kl_loss)
loss = rec_loss + kl_loss
chainer.report({'loss': loss}, observer=self)
chainer.report({'kl_loss': kl_loss}, observer=self)
chainer.report({'rec_loss': rec_loss}, observer=self)
return loss
return lf
class Sampler(chainer.training.Extension):
def __init__(self, model, args, output_dir, frames, z):
self.model = model
self.args = args
self.output_dir = output_dir
self.frames = frames
self.z = z
def __call__(self, trainer):
if self.args.gpu >= 0:
self.model.to_cpu()
with chainer.using_config('train', False), chainer.no_backprop_mode():
frames_variational = self.model(self.frames)
save_images_collage(frames_variational.data,
os.path.join(self.output_dir,
'train_reconstructed_{}.png'.format(trainer.updater.iteration)))
with chainer.using_config('train', False), chainer.no_backprop_mode():
frames_variational = self.model.decode(self.z)
save_images_collage(frames_variational.data,
os.path.join(self.output_dir, 'sampled_{}.png'.format(trainer.updater.iteration)))
if self.args.gpu >= 0:
self.model.to_gpu()
def main():
parser = argparse.ArgumentParser(description='World Models ' + ID)
parser.add_argument('--data_dir', '-d', default="/data/wm", help='The base data/output directory')
parser.add_argument('--game', default='CarRacing-v0',
help='Game to use') # https://gym.openai.com/envs/CarRacing-v0/
parser.add_argument('--experiment_name', default='experiment_1', help='To isolate its files from others')
parser.add_argument('--load_batch_size', default=10, type=int,
help='Load game frames in batches so as not to run out of memory')
parser.add_argument('--model', '-m', default='',
help='Initialize the model from given file, or "default" for one in data folder')
parser.add_argument('--no_resume', action='store_true', help='Don''t auto resume from the latest snapshot')
parser.add_argument('--resume_from', '-r', default='', help='Resume the optimization from a specific snapshot')
parser.add_argument('--test', action='store_true', help='Generate samples only')
parser.add_argument('--gpu', '-g', default=-1, type=int, help='GPU ID (negative value indicates CPU)')
parser.add_argument('--epoch', '-e', default=1, type=int, help='number of epochs to learn')
parser.add_argument('--snapshot_interval', '-s', default=100, type=int,
help='100 = snapshot every 100itr*batch_size imgs processed')
parser.add_argument('--z_dim', '-z', default=32, type=int, help='dimension of encoded vector')
parser.add_argument('--batch_size', '-b', type=int, default=100, help='learning minibatch size')
parser.add_argument('--no_progress_bar', '-p', action='store_true', help='Display progress bar during training')
parser.add_argument('--kl_tolerance', type=float, default=0.5, help='')
args = parser.parse_args()
log(ID, "args =\n " + str(vars(args)).replace(",", ",\n "))
output_dir = os.path.join(args.data_dir, args.game, args.experiment_name, ID)
random_rollouts_dir = os.path.join(args.data_dir, args.game, args.experiment_name, 'random_rollouts')
mkdir(output_dir)
max_iter = 0
auto_resume_file = None
files = os.listdir(output_dir)
for file in files:
if re.match(r'^snapshot_iter_', file):
iter = int(re.search(r'\d+', file).group())
if (iter > max_iter):
max_iter = iter
if max_iter > 0:
auto_resume_file = os.path.join(output_dir, "snapshot_iter_{}".format(max_iter))
model = CVAE(args.z_dim)
if args.model:
if args.model == 'default':
args.model = os.path.join(output_dir, ID + ".model")
log(ID, "Loading saved model from: " + args.model)
chainer.serializers.load_npz(args.model, model)
optimizer = chainer.optimizers.Adam(alpha=0.0001)
optimizer.setup(model)
log(ID, "Loading training data")
train = VisionDataset(dir=random_rollouts_dir, load_batch_size=args.load_batch_size, shuffle=True, verbose=True)
train_iter = chainer.iterators.SerialIterator(train, args.batch_size, shuffle=False)
updater = training.StandardUpdater(
train_iter, optimizer,
device=args.gpu, loss_func=model.get_loss_func(args.kl_tolerance))
trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=output_dir)
trainer.extend(extensions.snapshot(), trigger=(args.snapshot_interval, 'iteration'))
trainer.extend(extensions.LogReport(trigger=(100 if args.gpu >= 0 else 10, 'iteration')))
trainer.extend(extensions.PrintReport(['epoch', 'iteration', 'main/loss', 'main/kl_loss', 'main/rec_loss', 'elapsed_time']))
if not args.no_progress_bar:
trainer.extend(extensions.ProgressBar(update_interval=100 if args.gpu >= 0 else 10))
sample_idx = np.random.choice(range(train.get_current_batch_size()), 64, replace=False)
sample_frames = chainer.Variable(np.asarray(train[sample_idx]))
np.random.seed(31337)
sample_z = chainer.Variable(np.random.normal(0, 1, (64, args.z_dim)).astype(np.float32))
save_images_collage(sample_frames.data, os.path.join(output_dir, 'train.png'))
sampler = Sampler(model, args, output_dir, sample_frames, sample_z)
trainer.extend(sampler, trigger=(args.snapshot_interval, 'iteration'))
if args.resume_from:
log(ID, "Resuming trainer manually from snapshot: " + args.resume_from)
chainer.serializers.load_npz(args.resume_from, trainer)
elif not args.no_resume and auto_resume_file is not None:
log(ID, "Auto resuming trainer from last snapshot: " + auto_resume_file)
chainer.serializers.load_npz(auto_resume_file, trainer)
if not args.test:
log(ID, "Starting training")
trainer.run()
log(ID, "Done training")
log(ID, "Saving model")
chainer.serializers.save_npz(os.path.join(output_dir, ID + ".model"), model)
if args.test:
log(ID, "Saving test samples")
sampler(trainer)
if not args.test:
log(ID, "Saving latent z's for all training data")
train = VisionDataset(dir=random_rollouts_dir, load_batch_size=args.load_batch_size, shuffle=False,
verbose=True)
total_batches = train.get_total_batches()
for batch in range(total_batches):
gc.collect()
train.load_batch(batch)
batch_frames, batch_rollouts, batch_rollouts_counts = train.get_current_batch()
mu = None
ln_var = None
splits = batch_frames.shape[0] // args.batch_size
if batch_frames.shape[0] % args.batch_size != 0:
splits += 1
for i in range(splits):
start_idx = i * args.batch_size
end_idx = (i + 1) * args.batch_size
sample_frames = batch_frames[start_idx:end_idx]
if args.gpu >= 0:
sample_frames = chainer.Variable(cp.asarray(sample_frames))
else:
sample_frames = chainer.Variable(sample_frames)
this_mu, this_ln_var = model.encode(sample_frames)
this_mu = this_mu.data
this_ln_var = this_ln_var.data
if args.gpu >= 0:
this_mu = cp.asnumpy(this_mu)
this_ln_var = cp.asnumpy(this_ln_var)
if mu is None:
mu = this_mu
ln_var = this_ln_var
else:
mu = np.concatenate((mu, this_mu), axis=0)
ln_var = np.concatenate((ln_var, this_ln_var), axis=0)
running_count = 0
for rollout in batch_rollouts:
rollout_dir = os.path.join(random_rollouts_dir, rollout)
rollout_count = batch_rollouts_counts[rollout]
start_idx = running_count
end_idx = running_count + rollout_count
this_mu = mu[start_idx:end_idx]
this_ln_var = ln_var[start_idx:end_idx]
np.savez_compressed(os.path.join(rollout_dir, "mu+ln_var.npz"), mu=this_mu, ln_var=this_ln_var)
running_count = running_count + rollout_count
log(ID, "> Processed z's for rollouts " + str(batch_rollouts))
# Free up memory:
batch_frames = None
mu = None
ln_var = None
log(ID, "Done")
if __name__ == '__main__':
main()