forked from mapsme/omim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrobust_orientation.hpp
131 lines (100 loc) · 3.98 KB
/
robust_orientation.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#pragma once
#include "geometry/point2d.hpp"
#include "base/stl_add.hpp"
#include "std/algorithm.hpp"
namespace m2 { namespace robust
{
bool Init();
/// @return > 0, (p1, p2, p) - is CCW (left oriented)
/// < 0, (p1, p2, p) - is CW (right oriented)
/// Same as CrossProduct(p1 - p, p2 - p), but uses robust calculations.
double OrientedS(PointD const & p1, PointD const & p2, PointD const & p);
/// Is segment (v, v1) in cone (vPrev, v, vNext)?
/// @precondition (vPrev, v, vNext) is CCW.
bool IsSegmentInCone(PointD const & v, PointD const & v1,
PointD const & vPrev, PointD const & vNext);
bool SegmentsIntersect(PointD const & p1, PointD const & p2,
PointD const & p3, PointD const & p4);
template <typename T> bool Between(T a, T b, T c)
{
return min(a, b) <= c && c <= max(a, b);
}
template <class PointT> bool IsInSection(PointT const & p1, PointT const & p2, PointT const & p)
{
return Between(p1.x, p2.x, p.x) && Between(p1.y, p2.y, p.y);
}
template <typename IterT>
bool CheckPolygonSelfIntersections(IterT beg, IterT end)
{
IterT last = end;
--last;
for (IterT i = beg; i != last; ++i)
for (IterT j = i; j != end; ++j)
{
// do not check intersection of neibour segments
if (distance(i, j) <= 1 || (i == beg && j == last))
continue;
IterT ii = NextIterInCycle(i, beg, end);
IterT jj = NextIterInCycle(j, beg, end);
PointD a = *i, b = *ii, c = *j, d = *jj;
// check for rect intersection
if (max(a.x, b.x) < min(c.x, d.x) ||
min(a.x, b.x) > max(c.x, d.x) ||
max(a.y, b.y) < min(c.y, d.y) ||
min(a.y, b.y) > max(c.y, d.y))
{
continue;
}
double const s1 = OrientedS(a, b, c);
double const s2 = OrientedS(a, b, d);
double const s3 = OrientedS(c, d, a);
double const s4 = OrientedS(c, d, b);
// check if sections have any intersection
if (s1 * s2 > 0.0 || s3 * s4 > 0.0)
continue;
// Common principle if any point lay exactly on section, check 2 variants:
// - касание (><) - don't return as intersection;
// - 'X'-crossing - return as intersection;
// 'X'-crossing defines when points lay in different cones.
if (s1 == 0.0 && IsInSection(a, b, c))
{
PointD const prev = *PrevIterInCycle(j, beg, end);
PointD test[] = { a, b };
if (a == c) test[0] = *PrevIterInCycle(i, beg, end);
if (b == c) test[1] = *NextIterInCycle(ii, beg, end);
if (IsSegmentInCone(c, test[0], prev, d) == IsSegmentInCone(c, test[1], prev, d))
continue;
}
if (s2 == 0.0 && IsInSection(a, b, d))
{
PointD const next = *NextIterInCycle(jj, beg, end);
PointD test[] = { a, b };
if (a == d) test[0] = *PrevIterInCycle(i, beg, end);
if (b == d) test[1] = *NextIterInCycle(ii, beg, end);
if (IsSegmentInCone(d, test[0], c, next) == IsSegmentInCone(d, test[1], c, next))
continue;
}
if (s3 == 0.0 && IsInSection(c, d, a))
{
PointD const prev = *PrevIterInCycle(i, beg, end);
PointD test[] = { c, d };
if (c == a) test[0] = *PrevIterInCycle(j, beg, end);
if (d == a) test[1] = *NextIterInCycle(jj, beg, end);
if (IsSegmentInCone(a, test[0], prev, b) == IsSegmentInCone(a, test[1], prev, b))
continue;
}
if (s4 == 0.0 && IsInSection(c, d, b))
{
PointD const next = *NextIterInCycle(ii, beg, end);
PointD test[] = { c, d };
if (c == b) test[0] = *PrevIterInCycle(j, beg, end);
if (d == b) test[1] = *NextIterInCycle(jj, beg, end);
if (IsSegmentInCone(b, test[0], a, next) == IsSegmentInCone(b, test[1], a, next))
continue;
}
return true;
}
return false;
}
}
}