-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_gpt.py
472 lines (396 loc) · 19.1 KB
/
train_gpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
from datasets import dataclass
import torch
import os
import time
import torch.nn as nn
import math
import inspect
from torch.nn import functional as F
class CasualSelfAttention(nn.Module):
def __init__(self, config):
super.__init__()
assert config.n_embd % config.n_head == 0
# key, query, value projections for all heads, in a batch
self.c_attn = nn.Linear(config.n_embd, 3*config.n_embd)
# output projection
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
self.c_proj.NANOGPT_SCALE_INIT = 1
# regularization
self.n_head = config.n_head
self.n_embd = config.n_embd
# not bias, more of a mask but following OpenAI/HF naming
# mask to remove the lower half triangle of key value matrix multiplication
# in a attention you focus on values before you, not ahead
self.register_buffer('bias', torch.tril(torch.ones(config.block_size, config.block_size))
.view(1, 1, config.block_size, config.block_size))
def forward(self, x):
B, T, C = x.size() # batch size, sequence length (context length), embedding dimension (n_embd)
# calculate query, keys, values for all heads in a batch, and move head forward to be the batch dim
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
# In GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
qkv = self.c_attn(x) # concatenated query, key, values from x
q, k, v = qkv.split(self.n_embd, dim=2) # split into each dimension C
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
# ATTENTION
# attention - materialize the large (T, T) matrix for all keys, queries
# att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) # multiply query keys
# att = att.masked_fill(self.bias[:,:,:T, :T] == 0, float('-inf')) # removing lower half triangle
# att = F.softmax(att, dim=-1)
# y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
# FLASH ATTENTION IMPLEMENTED
y = F.scaled_dot_product_attention(q, k, v, is_casual=True)
y = y.transpose(1,2).contigous().view(B,T,C) # re-assemble all head outputs side by side
y = self.c_proj(y) # output projection
return y
class MLP(nn.Module):
def __init__(self, config):
super.__init__()
self.c_fc = nn.Linear(config.n_embd, 4*config.n_embd) # expand dimensionality
self.gelu = nn.GELU(approximate = 'tanh')
self.c_proj = nn.Linear(4*config.n_embd, config.n_embd)
self.c_proj.NANOGPT_SCALE_INIT = 1
def forward(self, x):
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super.__init__()
self.ln_1 = nn.LayerNorm(config.n_embd)
self.attn = CasualSelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd)
self.mlp = MLP(config)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
@dataclass
class GPTConfig:
block_size: int = 1024
vocab_size: int = 50304
n_layer: int = 12
n_head: int = 12
n_embd: int = 768
class GPT(nn.Module):
def __init__(self, config):
super.__init__()
self.config = config
# create a wrapper to follow transformers architecture
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd), # word token embeddings - layer used to embed tokens (words or subword units) into a continuous vector space of dimension
wpe = nn.Embedding(config.block_size, config.n_embd), # word positional embeddings - layer used for representing positions of tokens within a sequence
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), # transformers block
ln_f = nn.LayerNorm(config.n_embd)
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# weight sharing scheme - number of parameters to learn is reduced
# embedding of a token should be closely related to how the token is predicted in the output
self.transformer.wte.weight = self.lm_head
self.apply(self._init_weights) # to initialize random weights
def _init_weights(self, module):
# intializing weights with mean 0, standard deviation 0.02
if isinstance(module, nn.Linear):
std = 0.02
if hasattr(module, 'NANOGPT_SCALE_INIT'):
# conditional scaling for deeper models, to control variance
std *= (2*self.config.n_layer) ** -0.5
torch.nn.init.normal_(module.weight, mean=0, std=std)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0, std=0.02)
def forward(self, idx, targets=None):
# idx is the shape of (B, T)
B, T = idx.size()
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only of {self.config.block_size}"
# forward the token and position embeddings
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
pos_emb = self.transformer.wpe(pos) # position embeddings (T, n_embd)
tok_emb = self.transformer.wte(idx) # token embeddings (B, T, n_embd)
x = tok_emb + pos_emb
# forward the blocks of transformer
for block in self.transformer.h:
x = block(x)
# forward final layernorm and classifier
x = self.transformer.ln_f(x)
logits = self.lm_head(x) # (B, T, vocab_size)
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
return logits, loss
@classmethod
def from_pretrained(cls, model_type):
"""Loads pretrained GPT-2 model weights from huggingface"""
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
from transformers import GPT2LMHeadModel
print("loading weights from pretrained gpt: %s" % model_type)
# n_layer, n_head, n_embd from model type
config_args = {
'gpt2' : dict(n_layer=12, n_head=12, n_embd=768),
'gpt2-medium' : dict(n_layer=24, n_head=16, n_embd=1024),
'gpt2-large' : dict(n_layer=36, n_head=20, n_embd=1280),
'gpt2-xl' : dict(n_layer=48, n_head=25, n_embd=1600),
}[model_type]
config_args['vocab_size'] = 50257
config_args['block_size'] = 1024
config = GPTConfig(**config_args)
model = GPT(config)
sd = model.state_dict() # state dictionary
sd_keys = sd.keys()
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discarding mask/buffer, 'cause not a param
# init huggingface model
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
sd_hf = model_hf.state_dict()
# copy weights from huggingface, all params are aligned and match names and shape
sd_keys_hf = sd_hf.keys()
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')]
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')]
# openai checkpoints use conv1D, but our current implementation is linear, which means we transpose these weights
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
assert len(sd_keys_hf == sd_keys), f"mismatched keys: {len(sd_keys_hf) != len(sd_keys)}"
for k in sd_keys_hf:
if any(k.endswith(w) for w in transposed):
# special treatment for convd1d weights we need to transpose
assert sd_hf[k].shape[::-1] == sd[k].shape
with torch.no_grad():
sd[k].copy_(sd_hf[k].t())
else:
# vanilla copy for other params
assert sd_hf[k].shape == sd[k].shape
with torch.no_grad():
sd[k].copy(sd_hf[k])
return model
# selectively apply weight decay to embeddings, and parameters participating in matrix mul
def configure_params(self, weight_decay, learning_rate, device):
# start with all of the candidate parameters (that require grad)
param_dict = {pn: p for pn, p in self.named_parameters()}
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
# i.e. all weight tensors in matmuls + embeddings decay
# not all biases and layernorms.
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
optim_groups = [
{'params': decay_params, 'weight_decay': weight_decay},
{'params': nodecay_params, 'weight_decay': 0.0}
]
num_decay_params = sum(p.numel() for p in decay_params)
num_nodecay_params = sum(p.numel() for p in nodecay_params)
if master_process:
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
# Create AdamW optimizer and use the fused version - uses hardware specific features
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
use_fused = fused_available and 'cuda' in device
if master_process:
print(f"using fused AdamW: {use_fused}")
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8, fused=use_fused)
return optimizer
# -----------------------------------------------------------------------------------------------------------------------
import tiktoken
import numpy as np
def load_tokens(filename):
npt = np.load(filename)
ptt = torch.tensor(npt, dtype=torch.long)
return ptt
class DataLoaderLite:
def __init__(self, B, T, process_rank, num_processes, split):
self.B = B
self.T = T
self.process_rank = process_rank
self.num_processes = num_processes
assert split in {'train', 'val'}
# get the shard filenames
data_root = "edu_fineweb10B"
shards = os.listdir(data_root)
shards = [s for s in shards if split in s]
shards = sorted(shards)
shards = [os.path.join(data_root, s) for s in shards]
self.shards = shards
assert len(shards) > 0, f"no shards found for split {split}"
if master_process:
print(f"found {len(shards)} shards for split {split}")
self.reset()
def reset(self):
# state, init at shard zero
self.current_shard = 0
self.tokens = load_tokens(self.shards[self.current_shard])
self.current_position = self.B * self.T * self.process_rank
def next_batch(self):
B, T = self.B, self.T
buf = self.tokens[self.current_position : self.current_position + B*T+1]
# for x = token[0...3] y = token[4]
x = (buf[:-1]).view(B, T) # inputs
y = (buf[1:]).view(B, T) # targets
self.current_position += B * T * self.num_processes
if self.current_position + (B*T*self.num_processes+1) > len(self.tokens):
self.current_shard = (self.current_shard + 1) % len(self.shards)
self.tokens = load_tokens(self.shards[self.current_shard])
self.current_position = B * T * self.process_rank
return x, y
# -----------------------------------------------------------------------------------------------------
# auto detect device
# DDP launch for say 8 GPU's
# torchrun --standalone --nproc_per_node=8 train_gpt2.py
# run training loop
from torch.distributed import init_process_group, destroy_process_group
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.distributed as dist
# set up DDP (distributed data parallel).
# torchrun command sets the env variables RANK, LOCAL_RANK, and WORLD_SIZE
ddp = int(os.environ.get('RANK', -1)) != -1 # is this a ddp run?
if ddp:
# use of DDP atm demands CUDA, we set the device appropriately according to rank
assert torch.cuda.is_available(), "for now i think we need CUDA for DDP"
init_process_group(backend='nccl')
ddp_rank = int(os.environ['RANK'])
ddp_local_rank = int(os.environ['LOCAL_RANK'])
ddp_world_size = int(os.environ['WORLD_SIZE'])
device = f'cuda:{ddp_local_rank}'
torch.cuda.set_device(device)
master_process = ddp_rank == 0 # this process will do logging, checkpointing etc.
else:
# vanilla, non-DDP run
ddp_rank = 0
ddp_local_rank = 0
ddp_world_size = 1
master_process = True
# attempt to autodetect device
device = "cpu"
if torch.cuda.is_available():
device = "cuda"
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
device = "mps"
print(f"using device: {device}")
torch.manual_seed(1337)
if torch.cuda.is_available():
torch.cuda.manual_seed(1337)
total_batch_size = 524288 # 2**19, ~0.5M, in number of tokens
B = 64 # micro batch size
T = 1024 # sequence length
assert total_batch_size % (B * T * ddp_world_size) == 0, "make sure total_batch_size is divisible by B * T"
grad_accum_steps = total_batch_size // (B * T * ddp_world_size)
if master_process:
print(f"total desired batch size: {total_batch_size}")
print(f"=> calculated gradient accumulation steps: {grad_accum_steps}")
train_loader = DataLoaderLite(B=B, T=T, process_rank=ddp_rank, num_processes=ddp_world_size, split="train")
val_loader = DataLoaderLite(B=B, T=T, process_rank=ddp_rank, num_processes=ddp_world_size, split="val")
torch.set_float32_matmul_precision('high') # ensure higher accuracy in matrix multiplication, slow performance
# model = GPT.from_pretrained('gpt2')
# print("didn't crash yay!")
# get logits
model = GPT(GPTConfig())
model.to(device) # ensure data and model on same device
model = torch.compile(model)
if ddp:
model = DDP(model, device_ids=[ddp_local_rank])
raw_model = model.module if ddp else model # always contains the "raw" unwrapped model
# learning rate decay - cosine
max_lr = 6e-4
min_lr = max_lr * 0.1
warmup_steps = 715
max_steps = 19073
def get_lr(it):
# 1) linear warmup for warmup_iters steps
if it < warmup_steps:
return max_lr * (it+1) / warmup_steps
# 2) if it > lr_decay_iters, return min learning rate
if it > max_steps:
return min_lr
# 3) in between, use cosine decay down to min learning rate
decay_ratio = (it - warmup_steps) / (max_steps - warmup_steps)
assert 0 <= decay_ratio <= 1
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) # coeff starts at 1 and goes to 0
return min_lr + coeff * (max_lr - min_lr)
# optimize
optimizer = raw_model.configure_params(weight_decay=0.1, learning_rate=6e-4, device=device) # weight decay optimizer
for step in range(max_steps):
t0 = time.time()
# once in a while evaluate our validation loss
if step % 100 == 0:
model.eval()
val_loader.reset()
with torch.no_grad():
val_loss_accum = 0.0
val_loss_steps = 20
for _ in range(val_loss_steps):
x, y = val_loader.next_batch()
x, y = x.to(device), y.to(device)
with torch.autocast(device_type=device, dtype=torch.bfloat16):
logits, loss = model(x, y)
loss = loss / val_loss_steps
val_loss_accum += loss.detach()
if ddp:
dist.all_reduce(val_loss_accum, op=dist.ReduceOp.AVG)
if master_process:
print(f"validation loss: {val_loss_accum.item():.4f}")
# training loop
model.train()
optimizer.zero_grad()
loss_accum = 0.0
for micro_step in range(grad_accum_steps):
x, y = train_loader.next_batch()
x, y = x.to(device), y.to(device)
# bfloat16 has same exponent range as fp32.
# Povides enough precision to maintain model accuracy while reducing computational and memory overhead.
with torch.autocast(device_type=device, dtype=torch.bfloat16):
logits, loss = model(x, y)
# we have to scale the loss to account for gradient accumulation,
# because the gradients just add on each successive backward().
# addition of gradients corresponds to a SUM in the objective, but
# instead of a SUM we want MEAN. Scale the loss here so it comes out right
loss = loss / grad_accum_steps
loss_accum += loss.detach()
if ddp:
# synchornize gradients across distributed process, only on last accumulation step
# code avoids synchronizing gradients on every backward() call
model.require_backward_grad_sync = (micro_step == grad_accum_steps - 1)
loss.backward()
# clip gradients
norm = torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
# determine and set the learning rate for this iteration
lr = get_lr(step)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
optimizer.step()
torch.cuda.synchronize() # wait for gpu to finish the work
t1 = time.time()
dt = t1 - t0 # time difference in seconds
tokens_processed = train_loader.B * train_loader.T * grad_accum_steps * ddp_world_size
tokens_per_sec = tokens_processed / dt
if master_process:
print(f"step {step:5d} | loss: {loss_accum.item():.6f} | lr {lr:.4e} | norm: {norm:.4f} | dt: {dt*1000:.2f}ms | tok/sec: {tokens_per_sec:.2f}")
if ddp:
destroy_process_group()
import sys; sys.exit(0)
# ---------------------------------------------------------------------------------------------------------------
# evaluation loop
model.eval()
num_return_sequences = 5
max_length = 30
enc = tiktoken.get_encoding('gpt2')
tokens = enc.encode("Hello, I'm a language model,")
tokens = torch.tensor(tokens, dtype=torch.long) # (8)
tokens = tokens.unsqueeze(0).repeat(num_return_sequences, 1) # (5, 8)
x = tokens.to(device)
# generate , rn x = (B, T) (5, 8)
torch.manual_seed(42)
torch.cuda.manual_seed(42)
while x.size() < max_length:
with torch.no_grad():
logits = model(x) # (B, T, vocab_size)
logits = logits[:, -1, :] # (B, vocab_size)
probs = F.softmax(logits, dim=-1)
# do top_k sampling of 50
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
ix = torch.multinomial(topk_probs, 1) # (B, 1)
xcol = torch.gather(topk_indices, -1, ix) # (B, 1)
x = torch.cat((x, xcol), dim=1)
# print generated text
for i in range(num_return_sequences):
tokens = x[i, :max_length].tolist()
decoded = enc.decode(tokens)
print(">", decoded)