-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathraw_extract_and_save.py
109 lines (80 loc) · 3.53 KB
/
raw_extract_and_save.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Jun 3 19:29:26 2022
@license: MIT
@author: Dulfiqar 'activexdiamond' H. Al-Safi
"""
############################## Dependencies ##############################
##Path utils for image loading.
import os
##Maths
import numpy
##RNG
## Data serialization and deserialization
import deepdish
##Image manipulation.
import cv2
import skimage
##Dataset Mangement
##Visualization
from matplotlib import pyplot
############################## Custom Modules ##############################
import preprocessing
import sfta
import debugging
############################## Config ##############################
import config
import debug_config
def main():
numpy.random.seed(config.NUMPY_SEED)
raw_images = preprocessing.load_images(config.IMAGE_RELATIVE_PATH)
labels = preprocessing.load_labels(config.LABEL_RELATIVE_PATH)
dataset_len = len(raw_images)
image_shape = (dataset_len, config.IMAGE_W, config.IMAGE_H)
images = numpy.empty(image_shape)
features = []
#for i in range(3):
# image = raw_images[i]
for i, image in enumerate(raw_images):
#print(f"Stripping skull from image at index: {i}")
#The third param should be True if you wish to display plots to the user during processing.
#image = preprocessing.strip_skull(image, True, i < debug_config.SKULL_STRIPS_TO_DISPLAY, i)
##Convert to gray-scale.
image = cv2.cvtColor(image, config.FINAL_GRAYING_MODE)
##Crop and resize.
image = cv2.resize(image, (config.IMAGE_SIZE))
feat = {}
## LBP
feat["lbp"] = preprocessing.compute_lbp(image)
## HOG
feat["hog"], hog_image = skimage.feature.hog(image, visualize=True)
## SFTA
feat["sfta"] = sfta.compute_sfta(image, 5)
## Third Order - GLCM
feat["glcm"] = preprocessing.compute_glcm_stats(image)
## First Order - Stats
feat["fo"] = preprocessing.compute_fo_all(image)
##Debug
debugging.plot_features(i, image, feat)
##Final step.
features.append(feat)
images[i, :, :] = image
print(f"Saving extracted features to: {config.RAW_FEATURE_OUTPUT_PATH}")
feature_path = os.getcwd() + config.RAW_FEATURE_OUTPUT_PATH
deepdish.io.save(feature_path, features)
############################## Debug-Plot Images
##Plot the proportion of normal and abnormal labels.
pyplot.bar(labels, debug_config.PLOT_RATIO_BARS_H)
##Display the images as matplotlib plots, to get an idea of what we're working with.
##This is the main purpose of the d_<x>_images arrays.
debugging.image_plotter(images, labels, debug_config.PLOT_IMAGE_FIGURE_SIZE, debug_config.PLOTTED_IMAGE_COUNT,
"Final Result", debug_config.PLOT_IMAGE_OFFSET)
#debugging.image_plotter(d_raw_images, labels, debug_config.PLOT_IMAGE_FIGURE_SIZE, debug_config.PLOTTED_IMAGE_COUNT,
# "Raw", debug_config.PLOT_IMAGE_OFFSET)
#debugging.image_plotter(d_brain_images, labels, debug_config.PLOT_IMAGE_FIGURE_SIZE, debug_config.PLOTTED_IMAGE_COUNT,
# "Skull-Stripped", debug_config.PLOT_IMAGE_OFFSET)
#debugging.image_plotter(d_gray_images, labels, debug_config.PLOT_IMAGE_FIGURE_SIZE, debug_config.PLOTTED_IMAGE_COUNT,
# "Grayed", debug_config.PLOT_IMAGE_OFFSET)
if __name__ == '__main__':
main()