-
Notifications
You must be signed in to change notification settings - Fork 39
/
nodes.py
171 lines (138 loc) · 4.87 KB
/
nodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
from __future__ import annotations
from PIL import Image
import numpy as np
import base64
import torch
from io import BytesIO
from server import PromptServer, BinaryEventTypes
class LoadImageBase64:
@classmethod
def INPUT_TYPES(s):
return {"required": {"image": ("STRING", {"multiline": False})}}
RETURN_TYPES = ("IMAGE", "MASK")
CATEGORY = "external_tooling"
FUNCTION = "load_image"
def load_image(self, image):
imgdata = base64.b64decode(image)
img = Image.open(BytesIO(imgdata))
if "A" in img.getbands():
mask = np.array(img.getchannel("A")).astype(np.float32) / 255.0
mask = 1.0 - torch.from_numpy(mask)
else:
mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
img = img.convert("RGB")
img = np.array(img).astype(np.float32) / 255.0
img = torch.from_numpy(img)[None,]
return (img, mask)
class LoadMaskBase64:
@classmethod
def INPUT_TYPES(s):
return {"required": {"mask": ("STRING", {"multiline": False})}}
RETURN_TYPES = ("MASK",)
CATEGORY = "external_tooling"
FUNCTION = "load_mask"
def load_mask(self, mask):
imgdata = base64.b64decode(mask)
img = Image.open(BytesIO(imgdata))
img = np.array(img).astype(np.float32) / 255.0
img = torch.from_numpy(img)
if img.dim() == 3: # RGB(A) input, use red channel
img = img[:, :, 0]
return (img.unsqueeze(0),)
class SendImageWebSocket:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"images": ("IMAGE",),
"format": (["PNG", "JPEG"], {"default": "PNG"}),
}
}
RETURN_TYPES = ()
FUNCTION = "send_images"
OUTPUT_NODE = True
CATEGORY = "external_tooling"
def send_images(self, images, format):
results = []
for tensor in images:
array = 255.0 * tensor.cpu().numpy()
image = Image.fromarray(np.clip(array, 0, 255).astype(np.uint8))
server = PromptServer.instance
server.send_sync(
BinaryEventTypes.UNENCODED_PREVIEW_IMAGE,
[format, image, None],
server.client_id,
)
results.append(
{"source": "websocket", "content-type": f"image/{format.lower()}", "type": "output"}
)
return {"ui": {"images": results}}
class CropImage:
"""Deprecated, ComfyUI has an ImageCrop node now which does the same."""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"x": (
"INT",
{"default": 0, "min": 0, "max": 8192, "step": 1},
),
"y": (
"INT",
{"default": 0, "min": 0, "max": 8192, "step": 1},
),
"width": (
"INT",
{"default": 512, "min": 1, "max": 8192, "step": 1},
),
"height": (
"INT",
{"default": 512, "min": 1, "max": 8192, "step": 1},
),
}
}
CATEGORY = "external_tooling"
RETURN_TYPES = ("IMAGE",)
FUNCTION = "crop"
def crop(self, image, x, y, width, height):
out = image[:, y : y + height, x : x + width, :]
return (out,)
def to_bchw(image: torch.Tensor):
if image.ndim == 3:
image = image.unsqueeze(0)
return image.movedim(-1, 1)
def to_bhwc(image: torch.Tensor):
return image.movedim(1, -1)
def mask_batch(mask: torch.Tensor):
if mask.ndim == 2:
mask = mask.unsqueeze(0)
return mask
class ApplyMaskToImage:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"mask": ("MASK",),
}
}
CATEGORY = "external_tooling"
RETURN_TYPES = ("IMAGE",)
FUNCTION = "apply_mask"
def apply_mask(self, image: torch.Tensor, mask: torch.Tensor):
out = to_bchw(image)
if out.shape[1] == 3: # Assuming RGB images
out = torch.cat([out, torch.ones_like(out[:, :1, :, :])], dim=1)
mask = mask_batch(mask)
assert mask.ndim == 3, f"Mask should have shape [B, H, W]. {mask.shape}"
assert out.ndim == 4, f"Image should have shape [B, C, H, W]. {out.shape}"
assert (
out.shape[-2:] == mask.shape[-2:]
), f"Image size {out.shape[-2:]} must match mask size {mask.shape[-2:]}"
is_mask_batch = mask.shape[0] == out.shape[0]
# Apply each mask in the batch to its corresponding image's alpha channel
for i in range(out.shape[0]):
alpha = mask[i] if is_mask_batch else mask[0]
out[i, 3, :, :] = alpha
return (to_bhwc(out),)