-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatautils.py
130 lines (104 loc) · 4.44 KB
/
datautils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import random
import numpy as np
import torch
from datasets import load_dataset
from tokenizer_wrapper import TokenizerWrapper
from transformers import AutoTokenizer, LlamaTokenizer
import os
def set_seed(seed):
np.random.seed(seed)
torch.random.manual_seed(seed)
'''
Generate tokenizer and return it to preload datasets by converting them to embedded vectors instead of natural words
'''
def get_tokenizer(model):
tokenizer = AutoTokenizer.from_pretrained(model)
return tokenizer
def get_wikitext2(nsamples, seed, seqlen, model, tokenizer):
traindata = load_dataset('wikitext', 'wikitext-2-raw-v1', split='train')
testdata = load_dataset('wikitext', 'wikitext-2-raw-v1', split='test')
trainenc = tokenizer(" ".join(traindata['text']), return_tensors='pt')
testenc = tokenizer("\n\n".join(testdata['text']), return_tensors='pt')
random.seed(seed)
trainloader = []
for _ in range(nsamples):
i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1)
j = i + seqlen
inp = trainenc.input_ids[:, i:j]
tar = inp.clone()
tar[:, :-1] = -100
trainloader.append((inp, tar))
return trainloader, testenc
def get_ptb(nsamples, seed, seqlen, model, tokenizer):
traindata = load_dataset('ptb_text_only', 'penn_treebank', split='train')
testdata = load_dataset('ptb_text_only', 'penn_treebank', split='test')
trainenc = tokenizer(" ".join(traindata['sentence']), return_tensors='pt')
testenc = tokenizer(" ".join(testdata['sentence']), return_tensors='pt')
random.seed(seed)
trainloader = []
for _ in range(nsamples):
i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1)
j = i + seqlen
inp = trainenc.input_ids[:, i:j]
tar = inp.clone()
tar[:, :-1] = -100
trainloader.append((inp, tar))
return trainloader, testenc
class TokenizerWrapper:
def __init__(self, input_ids):
self.input_ids = input_ids
def get_c4(nsamples, seed, seqlen, model, tokenizer):
traindata = load_dataset('json', data_files={'train': 'data/c4-train.00000-of-01024.json'})
valdata = load_dataset('json', data_files={'validation': 'data/c4-validation.00000-of-00008.json'})
traindata = traindata['train']
valdata = valdata['validation']
random.seed(seed)
trainloader = []
for _ in range(nsamples):
while True:
i = random.randint(0, len(traindata) - 1)
trainenc = tokenizer(traindata[i]['text'], return_tensors='pt')
if trainenc.input_ids.shape[1] > seqlen:
break
i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1)
j = i + seqlen
inp = trainenc.input_ids[:, i:j]
tar = inp.clone()
tar[:, :-1] = -100
trainloader.append((inp, tar))
valenc = tokenizer(' '.join(valdata[:1100]['text']), return_tensors='pt')
valenc = valenc.input_ids[:, :(256 * seqlen)]
valenc = TokenizerWrapper(valenc)
return trainloader, valenc
def get_loaders(name, nsamples=128, seed=0, seqlen=2048, model=''):
model_name = model.split('/')[-1]
cache_file=f'/mnt/afs/yliao/Tasks/moe/Expert_Quant/moeq/cache/{name}_{nsamples}_{seed}_{seqlen}/Mixtral-8x7B-v0.1.pt'
try:
test_enc = torch.load(cache_file)
return test_enc
except:
pass
tokenizer = get_tokenizer(model)
if 'wikitext2' in name:
loaders= get_wikitext2(nsamples, seed, seqlen, model, tokenizer)
if 'ptb' in name:
loaders= get_ptb(nsamples, seed, seqlen, model, tokenizer)
if 'c4' in name:
loaders= get_c4(nsamples, seed, seqlen, model, tokenizer)
if 'mix' in name:
wiki_train,wiki_val=get_wikitext2(nsamples//3, seed, seqlen, model, tokenizer)
ptb_train,ptb_val=get_ptb(nsamples//3, seed, seqlen, model, tokenizer)
c4_train,c4_val=get_c4(nsamples//3, seed, seqlen, model, tokenizer)
mixed_loader=wiki_train+ptb_train+c4_train
val=None
directory='/'.join(cache_file.split('/')[:-1])
if not os.path.exists(directory):
os.makedirs(directory)
torch.save((mixed_loader, val),cache_file)
return mixed_loader, val
directory='/'.join(cache_file.split('/')[:-1])
if not os.path.exists(directory):
os.makedirs(directory)
torch.save(loaders,cache_file)
return loaders
# get_loaders("c4", nsamples=128, seed=0, model='/mnt/afs/share/LLMCKPTs/mistralai/Mixtral-8x7B-v0.1', seqlen=2048)