forked from xianhong/DDPG-TORCS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
CriticNetwork.py
58 lines (51 loc) · 2.38 KB
/
CriticNetwork.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import numpy as np
import math
from keras.initializers import normal, identity
from keras.models import model_from_json, load_model
#from keras.engine.training import collect_trainable_weights
from keras.models import Sequential
from keras.layers import Dense, Flatten, Input, merge, Lambda, Activation
from keras.models import Sequential, Model
from keras.optimizers import Adam
import keras.backend as K
import tensorflow as tf
HIDDEN1_UNITS = 150 #300
HIDDEN2_UNITS = 300 #600
class CriticNetwork(object):
def __init__(self, sess, state_size, action_size, BATCH_SIZE, TAU, LEARNING_RATE):
self.sess = sess
self.BATCH_SIZE = BATCH_SIZE
self.TAU = TAU
self.LEARNING_RATE = LEARNING_RATE
self.action_size = action_size
K.set_session(sess)
#Now create the model
self.model, self.action, self.state = self.create_critic_network(state_size, action_size)
self.target_model, self.target_action, self.target_state = self.create_critic_network(state_size, action_size)
self.action_grads = tf.gradients(self.model.output, self.action) #GRADIENTS for policy update
self.sess.run(tf.initialize_all_variables())
def gradients(self, states, actions):
return self.sess.run(self.action_grads, feed_dict={
self.state: states,
self.action: actions
})[0]
def target_train(self):
critic_weights = self.model.get_weights()
critic_target_weights = self.target_model.get_weights()
for i in range(len(critic_weights)):
critic_target_weights[i] = self.TAU * critic_weights[i] + (1 - self.TAU)* critic_target_weights[i]
self.target_model.set_weights(critic_target_weights)
def create_critic_network(self, state_size,action_dim):
print("Now we build the model")
S = Input(shape=[state_size])
A = Input(shape=[action_dim],name='action2')
w1 = Dense(HIDDEN1_UNITS, activation='relu')(S)
a1 = Dense(HIDDEN2_UNITS, activation='linear')(A)
h1 = Dense(HIDDEN2_UNITS, activation='linear')(w1)
h2 = merge([h1,a1],mode='sum')
h3 = Dense(HIDDEN2_UNITS, activation='relu')(h2)
V = Dense(1,activation='linear')(h3)
model = Model(input=[S,A],output=V)
adam = Adam(lr=self.LEARNING_RATE)
model.compile(loss='mse', optimizer=adam)
return model, A, S