-
Notifications
You must be signed in to change notification settings - Fork 26.9k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[Bug]: Running out of VRAM AMD 7900 xt #16461
Comments
Same issue here, i see the VRAM being consumed more and more by the generation using XL models. Also, the A11 version at the bottom of the UI says I have version 1.10.1 but only 1.10.0 has been released according to the website. |
Your on an old torch version. Also better use --xformers instead of --opt-sdp-attention as xformers uses less vram. |
@target-bravo You can find all my AMD Webui Guides here: Im running a 7900XTX without any vram problems. Even upscaling SDXL Images works. |
Can't use Xformers without old Torch. Even the non-stable/beta/dev version or w.e, will not run with torch 2.4.1. I had a headache trying to get xformers running. I wish I could.. If I install the most recent dev version of Xformers, it actually uninstalls my new torch install to install 2.4.0, and installs it without CUDA to boot.. I even rooted around and looked for a 2.4.0 with cuda install, I installed that, and then A1111 wouldn't start up anymore.. So I eventually said screw it and deleted the virtual env and started over. |
It's great that you're a ZLUDA fanboy and all. But please stop spreading your BS regarding DirectML. We sadly live in a world where nvidia is king and ruler in AI. AMD is playing catch-up. ZLUDA is a band aid that might be fun "for now" but it's not going to be a long term thing. Now i'm much a fan of Linux and open source, DirectML as a microsoft thing isn't great either. Or we can just conclude that there are no good true cross platform options at the moment. If you are on AMD and on Windows then your best and most performant option would be DirectML (at a reduced feature set). |
Your saying DirectML is the best and pointing on an Image of Microsoft Olive+ONNX.... Let me get the Facts right for you: Im saying DirectML is slow and uses a lot of VRAM, which is true if you setup Automatic1111 for AMD with native DirectML (without Olive+ONNX). Olive and ONNX improve the performance a lot but at the cost of needing to convert every model you want to use and having limited to no extension support. I used DirectML without Olive or ONNX for over a year on my 7900XTX and on a 6700XT before without issues regarding models, loras, or extensions. On my Github Site I have DirectML and Zluda Guides. The DirectML Guides dont cover the Olive+ONNX Setup because after talking with many AMD Users over the last 2 years, nobody likes to convert their models everytime if there is an alternative that doesnt require it. With the extra cost of some extensions compatiblity and a more complex workflow. Zluda is the best compromise of Performance and compatibility for AMD Users on Windows right now. Regarding Linux: That's why I still recommend using ZLUDA to normal AMD Users instead of anything else. A couple of extra Solutions:
Conclusion: For Linux: Tldr: Currently ZLUDA offers the best mix of Performance, Usability, and Compatbility on Windows.
|
Thank you for that correction, you're absolutely right! What i'm not wrong about is that DirectML is, and i quote, The image i showed was, in hindsight, a bit misleading as it indeed shows OpenML + more (Olive). The importance here is that it shows it can be optimized for inference.
I as a linux user consider that kind of "running linux in windows" as a big laughing joke. It might work for the windows users just following a linux guide. |
Checklist
What happened?
Trying to run Txt2img on a 7900xt at a resolution of 540x960 and a 2x hires fix and i keep getting "RuntimeError: Could not allocate tensor with 18144080 bytes. There is not enough GPU video memory available!"
The below is my current cmd line args
COMMANDLINE_ARGS= --use-directml --port 80 --listen --enable-insecure-extension-access --no-half-vae
Any ideas on how to get this running smoothly?
Steps to reproduce the problem
run any image generation at high ish resolutions.
What should have happened?
Generate image without using more than the total vram
What browsers do you use to access the UI ?
Google Chrome
Sysinfo
{
"Platform": "Windows-10-10.0.22631-SP0",
"Python": "3.10.6",
"Version": "v1.10.1-amd-5-gd8b7380b",
"Commit": "d8b7380b18d044d2ee38695c58bae3a786689cf3",
"Git status": "On branch master\nYour branch is up to date with 'origin/master'.\n\nChanges not staged for commit:\n (use "git add ..." to update what will be committed)\n (use "git restore ..." to discard changes in working directory)\n\tmodified: webui-user.bat\n\nUntracked files:\n (use "git add ..." to include in what will be committed)\n\tvenv.old/\n\nno changes added to commit (use "git add" and/or "git commit -a")",
"Script path": "E:\SD\stable-diffusion-webui-directml",
"Data path": "E:\SD\stable-diffusion-webui-directml",
"Extensions dir": "E:\SD\stable-diffusion-webui-directml\extensions",
"Checksum": "73533d0a0366e6ef83e2deeef5c879a5771e36bd91c85e0abe94fe10ca333a99",
"Commandline": [
"launch.py",
"--use-directml",
"--port",
"80",
"--listen",
"--enable-insecure-extension-access",
"--no-half-vae"
],
"Torch env info": {
"torch_version": "2.3.1+cpu",
"is_debug_build": "False",
"cuda_compiled_version": null,
"gcc_version": null,
"clang_version": null,
"cmake_version": null,
"os": "Microsoft Windows 11 Pro",
"libc_version": "N/A",
"python_version": "3.10.6 (tags/v3.10.6:9c7b4bd, Aug 1 2022, 21:53:49) [MSC v.1932 64 bit (AMD64)] (64-bit runtime)",
"python_platform": "Windows-10-10.0.22631-SP0",
"is_cuda_available": "False",
"cuda_runtime_version": null,
"cuda_module_loading": "N/A",
"nvidia_driver_version": null,
"nvidia_gpu_models": null,
"cudnn_version": null,
"pip_version": "pip3",
"pip_packages": [
"numpy==1.26.2",
"onnx==1.16.2",
"onnxruntime==1.19.0",
"onnxruntime-directml==1.19.0",
"open-clip-torch==2.20.0",
"pytorch-lightning==1.9.4",
"torch==2.3.1",
"torch-directml==0.2.4.dev240815",
"torchdiffeq==0.2.3",
"torchmetrics==1.4.1",
"torchsde==0.2.6",
"torchvision==0.18.1"
],
"conda_packages": null,
"hip_compiled_version": "N/A",
"hip_runtime_version": "N/A",
"miopen_runtime_version": "N/A",
"caching_allocator_config": "",
"is_xnnpack_available": "True",
"cpu_info": [
"Architecture=9",
"CurrentClockSpeed=3394",
"DeviceID=CPU0",
"Family=107",
"L2CacheSize=4096",
"L2CacheSpeed=",
"Manufacturer=AuthenticAMD",
"MaxClockSpeed=3394",
"Name=AMD Ryzen 7 5800X3D 8-Core Processor ",
"ProcessorType=3",
"Revision=8450"
]
},
"Exceptions": [
{
"exception": "Could not allocate tensor with 18144080 bytes. There is not enough GPU video memory available!",
"traceback": [
[
"E:\SD\stable-diffusion-webui-directml\modules\call_queue.py, line 74, f",
"res = list(func(*args, **kwargs))"
],
[
"E:\SD\stable-diffusion-webui-directml\modules\call_queue.py, line 53, f",
"res = func(*args, **kwargs)"
],
[
"E:\SD\stable-diffusion-webui-directml\modules\call_queue.py, line 37, f",
"res = func(*args, **kwargs)"
],
[
"E:\SD\stable-diffusion-webui-directml\modules\txt2img.py, line 109, txt2img",
"processed = processing.process_images(p)"
],
[
"E:\SD\stable-diffusion-webui-directml\modules\processing.py, line 849, process_images",
"res = process_images_inner(p)"
],
[
"E:\SD\stable-diffusion-webui-directml\modules\processing.py, line 1083, process_images_inner",
"samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts)"
],
[
"E:\SD\stable-diffusion-webui-directml\modules\processing.py, line 1457, sample",
"return self.sample_hr_pass(samples, decoded_samples, seeds, subseeds, subseed_strength, prompts)"
],
[
"E:\SD\stable-diffusion-webui-directml\modules\processing.py, line 1549, sample_hr_pass",
"samples = self.sampler.sample_img2img(self, samples, noise, self.hr_c, self.hr_uc, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning)"
],
[
"E:\SD\stable-diffusion-webui-directml\modules\sd_samplers_kdiffusion.py, line 187, sample_img2img",
"samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))"
],
[
"E:\SD\stable-diffusion-webui-directml\modules\sd_samplers_common.py, line 272, launch_sampling",
"return func()"
],
[
"E:\SD\stable-diffusion-webui-directml\modules\sd_samplers_kdiffusion.py, line 187, ",
"samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))"
],
[
"E:\SD\stable-diffusion-webui-directml\venv\lib\site-packages\torch\utils\_contextlib.py, line 115, decorate_context",
"return func(*args, **kwargs)"
],
[
"E:\SD\stable-diffusion-webui-directml\repositories\k-diffusion\k_diffusion\sampling.py, line 594, sample_dpmpp_2m",
"denoised = model(x, sigmas[i] * s_in, **extra_args)"
],
[
"E:\SD\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\module.py, line 1532, _wrapped_call_impl",
"return self._call_impl(*args, **kwargs)"
],
[
"E:\SD\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\module.py, line 1541, _call_impl",
"return forward_call(*args, **kwargs)"
],
[
"E:\SD\stable-diffusion-webui-directml\modules\sd_samplers_cfg_denoiser.py, line 268, forward",
"x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(c_crossattn, image_cond_in[a:b]))"
],
[
"E:\SD\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\module.py, line 1532, _wrapped_call_impl",
"return self._call_impl(*args, **kwargs)"
],
[
"E:\SD\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\module.py, line 1541, _call_impl",
"return forward_call(*args, **kwargs)"
],
[
"E:\SD\stable-diffusion-webui-directml\repositories\k-diffusion\k_diffusion\external.py, line 112, forward",
"eps = self.get_eps(input * c_in, self.sigma_to_t(sigma), **kwargs)"
],
[
"E:\SD\stable-diffusion-webui-directml\repositories\k-diffusion\k_diffusion\external.py, line 138, get_eps",
"return self.inner_model.apply_model(*args, **kwargs)"
],
[
"E:\SD\stable-diffusion-webui-directml\modules\sd_hijack_utils.py, line 22, ",
"setattr(resolved_obj, func_path[-1], lambda *args, **kwargs: self(*args, **kwargs))"
],
[
"E:\SD\stable-diffusion-webui-directml\modules\sd_hijack_utils.py, line 34, call",
"return self.__sub_func(self.__orig_func, *args, **kwargs)"
],
[
"E:\SD\stable-diffusion-webui-directml\modules\sd_hijack_unet.py, line 50, apply_model",
"result = orig_func(self, x_noisy.to(devices.dtype_unet), t.to(devices.dtype_unet), cond, **kwargs)"
],
[
"E:\SD\stable-diffusion-webui-directml\modules\sd_hijack_utils.py, line 22, ",
"setattr(resolved_obj, func_path[-1], lambda *args, **kwargs: self(*args, **kwargs))"
],
[
"E:\SD\stable-diffusion-webui-directml\modules\sd_hijack_utils.py, line 36, call",
"return self.__orig_func(*args, **kwargs)"
],
[
"E:\SD\stable-diffusion-webui-directml\repositories\stable-diffusion-stability-ai\ldm\models\diffusion\ddpm.py, line 858, apply_model",
"x_recon = self.model(x_noisy, t, **cond)"
],
[
"E:\SD\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\module.py, line 1532, _wrapped_call_impl",
"return self._call_impl(*args, **kwargs)"
],
[
"E:\SD\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\module.py, line 1541, _call_impl",
"return forward_call(*args, **kwargs)"
],
[
"E:\SD\stable-diffusion-webui-directml\repositories\stable-diffusion-stability-ai\ldm\models\diffusion\ddpm.py, line 1335, forward",
"out = self.diffusion_model(x, t, context=cc)"
],
[
"E:\SD\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\module.py, line 1532, _wrapped_call_impl",
"return self._call_impl(*args, **kwargs)"
],
[
"E:\SD\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\module.py, line 1541, _call_impl",
"return forward_call(*args, **kwargs)"
],
[
"E:\SD\stable-diffusion-webui-directml\modules\sd_unet.py, line 91, UNetModel_forward",
"return original_forward(self, x, timesteps, context, *args, **kwargs)"
],
[
"E:\SD\stable-diffusion-webui-directml\repositories\stable-diffusion-stability-ai\ldm\modules\diffusionmodules\openaimodel.py, line 802, forward",
"h = module(h, emb, context)"
],
[
"E:\SD\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\module.py, line 1532, _wrapped_call_impl",
"return self._call_impl(*args, **kwargs)"
],
[
"E:\SD\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\module.py, line 1541, _call_impl",
"return forward_call(*args, **kwargs)"
],
[
"E:\SD\stable-diffusion-webui-directml\repositories\stable-diffusion-stability-ai\ldm\modules\diffusionmodules\openaimodel.py, line 84, forward",
"x = layer(x, context)"
],
[
"E:\SD\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\module.py, line 1532, _wrapped_call_impl",
"return self._call_impl(*args, **kwargs)"
],
[
"E:\SD\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\module.py, line 1541, _call_impl",
"return forward_call(*args, **kwargs)"
],
[
"E:\SD\stable-diffusion-webui-directml\modules\sd_hijack_utils.py, line 22, ",
"setattr(resolved_obj, func_path[-1], lambda *args, **kwargs: self(*args, **kwargs))"
],
[
"E:\SD\stable-diffusion-webui-directml\modules\sd_hijack_utils.py, line 34, call",
"return self.__sub_func(self.__orig_func, *args, **kwargs)"
],
[
"E:\SD\stable-diffusion-webui-directml\modules\sd_hijack_unet.py, line 96, spatial_transformer_forward",
"x = block(x, context=context[i])"
],
[
"E:\SD\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\module.py, line 1532, _wrapped_call_impl",
"return self._call_impl(*args, **kwargs)"
],
[
"E:\SD\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\module.py, line 1541, _call_impl",
"return forward_call(*args, **kwargs)"
],
[
"E:\SD\stable-diffusion-webui-directml\repositories\stable-diffusion-stability-ai\ldm\modules\attention.py, line 269, forward",
"return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)"
],
[
"E:\SD\stable-diffusion-webui-directml\repositories\stable-diffusion-stability-ai\ldm\modules\diffusionmodules\util.py, line 123, checkpoint",
"return func(*inputs)"
],
[
"E:\SD\stable-diffusion-webui-directml\repositories\stable-diffusion-stability-ai\ldm\modules\attention.py, line 272, _forward",
"x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x"
],
[
"E:\SD\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\module.py, line 1532, _wrapped_call_impl",
"return self._call_impl(*args, **kwargs)"
],
[
"E:\SD\stable-diffusion-webui-directml\venv\lib\site-packages\torch\nn\modules\module.py, line 1541, _call_impl",
"return forward_call(*args, **kwargs)"
],
[
"E:\SD\stable-diffusion-webui-directml\modules\sd_hijack_optimizations.py, line 393, split_cross_attention_forward_invokeAI",
"r = einsum_op(q, k, v)"
],
[
"E:\SD\stable-diffusion-webui-directml\modules\sd_hijack_optimizations.py, line 367, einsum_op",
"return einsum_op_dml(q, k, v)"
],
[
"E:\SD\stable-diffusion-webui-directml\modules\sd_hijack_optimizations.py, line 354, einsum_op_dml",
"return einsum_op_tensor_mem(q, k, v, (mem_reserved - mem_active) if mem_reserved > mem_active else 1)"
],
[
"E:\SD\stable-diffusion-webui-directml\modules\sd_hijack_optimizations.py, line 336, einsum_op_tensor_mem",
"return einsum_op_slice_1(q, k, v, max(q.shape[1] // div, 1))"
],
[
"E:\SD\stable-diffusion-webui-directml\modules\sd_hijack_optimizations.py, line 308, einsum_op_slice_1",
"r[:, i:end] = einsum_op_compvis(q[:, i:end], k, v)"
]
]
},
{
"exception": "None is not a local folder and is not a valid model identifier listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a token having permission to this repo either by logging in with
huggingface-cli login
or by passingtoken=<your_token>
","traceback": [
[
"E:\SD\stable-diffusion-webui-directml\modules\sd_models.py, line 831, load_model",
"sd_model = instantiate_from_config(sd_config.model, state_dict)"
],
[
"E:\SD\stable-diffusion-webui-directml\modules\sd_models.py, line 775, instantiate_from_config",
"return constructor(**params)"
],
[
"E:\SD\stable-diffusion-webui-directml\repositories\stable-diffusion-stability-ai\ldm\models\diffusion\ddpm.py, line 563, init",
"self.instantiate_cond_stage(cond_stage_config)"
],
[
"E:\SD\stable-diffusion-webui-directml\repositories\stable-diffusion-stability-ai\ldm\models\diffusion\ddpm.py, line 630, instantiate_cond_stage",
"model = instantiate_from_config(config)"
],
[
"E:\SD\stable-diffusion-webui-directml\repositories\stable-diffusion-stability-ai\ldm\util.py, line 89, instantiate_from_config",
"return get_obj_from_str(config["target"])(**config.get("params", dict()))"
],
[
"E:\SD\stable-diffusion-webui-directml\repositories\stable-diffusion-stability-ai\ldm\modules\encoders\modules.py, line 104, init",
"self.transformer = CLIPTextModel.from_pretrained(version)"
],
[
"E:\SD\stable-diffusion-webui-directml\modules\sd_disable_initialization.py, line 68, CLIPTextModel_from_pretrained",
"res = self.CLIPTextModel_from_pretrained(None, *model_args, config=pretrained_model_name_or_path, state_dict={}, **kwargs)"
],
[
"E:\SD\stable-diffusion-webui-directml\venv\lib\site-packages\transformers\modeling_utils.py, line 3213, from_pretrained",
"resolved_config_file = cached_file("
],
[
"E:\SD\stable-diffusion-webui-directml\venv\lib\site-packages\transformers\utils\hub.py, line 425, cached_file",
"raise EnvironmentError("
]
]
}
],
"CPU": {
"model": "AMD64 Family 25 Model 33 Stepping 2, AuthenticAMD",
"count logical": 16,
"count physical": 8
},
"RAM": {
"total": "16GB",
"used": "11GB",
"free": "5GB"
},
"Extensions": [
{
"name": "multidiffusion-upscaler-for-automatic1111",
"path": "E:\SD\stable-diffusion-webui-directml\extensions\multidiffusion-upscaler-for-automatic1111",
"commit": "22798f6822bc9c8a905b51da8954ee313b973331",
"branch": "main",
"remote": "https://github.com/pkuliyi2015/multidiffusion-upscaler-for-automatic1111.git"
}
],
"Inactive extensions": [],
"Environment": {
"COMMANDLINE_ARGS": " --use-directml --port 80 --listen --enable-insecure-extension-access --no-half-vae",
"GRADIO_ANALYTICS_ENABLED": "False"
},
"Config": {
"ldsr_steps": 100,
"ldsr_cached": false,
"SCUNET_tile": 256,
"SCUNET_tile_overlap": 8,
"SWIN_tile": 192,
"SWIN_tile_overlap": 8,
"SWIN_torch_compile": false,
"hypertile_enable_unet": false,
"hypertile_enable_unet_secondpass": false,
"hypertile_max_depth_unet": 3,
"hypertile_max_tile_unet": 256,
"hypertile_swap_size_unet": 3,
"hypertile_enable_vae": false,
"hypertile_max_depth_vae": 3,
"hypertile_max_tile_vae": 128,
"hypertile_swap_size_vae": 3,
"sd_model_checkpoint": "chilloutmix_NiPrunedFp32Fix.safetensors [fc2511737a]",
"sd_checkpoint_hash": "fc2511737a54c5e80b89ab03e0ab4b98d051ab187f92860f3cd664dc9d08b271"
},
"Startup": {
"total": 46.024452209472656,
"records": {
"initial startup": 0.12500858306884766,
"prepare environment/checks": 0.0,
"prepare environment/git version info": 0.6563024520874023,
"prepare environment/clone repositores": 0.28126049041748047,
"prepare environment/run extensions installers/multidiffusion-upscaler-for-automatic1111": 0.015625715255737305,
"prepare environment/run extensions installers": 0.015625715255737305,
"prepare environment": 75.71254301071167,
"launcher": 0.0020012855529785156,
"import torch": 0.0,
"import gradio": 0.0,
"setup paths": 0.0010001659393310547,
"import ldm": 0.0030002593994140625,
"import sgm": 0.0,
"initialize shared": 2.3184762001037598,
"other imports": 0.03450608253479004,
"opts onchange": 0.0,
"setup SD model": 0.0004999637603759766,
"setup codeformer": 0.0010004043579101562,
"setup gfpgan": 0.01700282096862793,
"set samplers": 0.0,
"list extensions": 0.0015003681182861328,
"restore config state file": 0.0,
"list SD models": 0.040509700775146484,
"list localizations": 0.0005002021789550781,
"load scripts/custom_code.py": 0.0055010318756103516,
"load scripts/img2imgalt.py": 0.0010004043579101562,
"load scripts/loopback.py": 0.0004999637603759766,
"load scripts/outpainting_mk_2.py": 0.0004999637603759766,
"load scripts/poor_mans_outpainting.py": 0.0005002021789550781,
"load scripts/postprocessing_codeformer.py": 0.0004999637603759766,
"load scripts/postprocessing_gfpgan.py": 0.0005002021789550781,
"load scripts/postprocessing_upscale.py": 0.0004999637603759766,
"load scripts/prompt_matrix.py": 0.0010001659393310547,
"load scripts/prompts_from_file.py": 0.0005002021789550781,
"load scripts/sd_upscale.py": 0.0004999637603759766,
"load scripts/xyz_grid.py": 0.0020003318786621094,
"load scripts/ldsr_model.py": 0.3000602722167969,
"load scripts/lora_script.py": 0.11002206802368164,
"load scripts/scunet_model.py": 0.02150416374206543,
"load scripts/swinir_model.py": 0.020003318786621094,
"load scripts/hotkey_config.py": 0.0,
"load scripts/extra_options_section.py": 0.0010001659393310547,
"load scripts/hypertile_script.py": 0.035008907318115234,
"load scripts/postprocessing_autosized_crop.py": 0.0010001659393310547,
"load scripts/postprocessing_caption.py": 0.0004999637603759766,
"load scripts/postprocessing_create_flipped_copies.py": 0.0005002021789550781,
"load scripts/postprocessing_focal_crop.py": 0.0020003318786621094,
"load scripts/postprocessing_split_oversized.py": 0.0005002021789550781,
"load scripts/soft_inpainting.py": 0.0010001659393310547,
"load scripts/tilediffusion.py": 0.044507503509521484,
"load scripts/tileglobal.py": 0.016003131866455078,
"load scripts/tilevae.py": 0.014503002166748047,
"load scripts/comments.py": 0.020005464553833008,
"load scripts/refiner.py": 0.0010006427764892578,
"load scripts/sampler.py": 0.0004999637603759766,
"load scripts/seed.py": 0.0004999637603759766,
"load scripts": 0.6036219596862793,
"load upscalers": 0.003500699996948242,
"refresh VAE": 0.0009999275207519531,
"refresh textual inversion templates": 0.0005002021789550781,
"scripts list_optimizers": 0.0010001659393310547,
"scripts list_unets": 0.0,
"reload hypernetworks": 0.0005002021789550781,
"initialize extra networks": 0.054009437561035156,
"scripts before_ui_callback": 0.003500699996948242,
"create ui": 0.4175848960876465,
"gradio launch": 4.347925186157227,
"add APIs": 0.008502006530761719,
"app_started_callback/lora_script.py": 0.0004999637603759766,
"app_started_callback": 0.0004999637603759766
}
},
"Packages": [
"accelerate==0.21.0",
"aenum==3.1.15",
"aiofiles==23.2.1",
"aiohappyeyeballs==2.4.0",
"aiohttp==3.10.5",
"aiosignal==1.3.1",
"alembic==1.13.2",
"altair==5.4.1",
"antlr4-python3-runtime==4.9.3",
"anyio==3.7.1",
"async-timeout==4.0.3",
"attrs==24.2.0",
"blendmodes==2022",
"certifi==2024.8.30",
"charset-normalizer==3.3.2",
"clean-fid==0.1.35",
"click==8.1.7",
"clip @ https://github.com/openai/CLIP/archive/d50d76daa670286dd6cacf3bcd80b5e4823fc8e1.zip#sha256=b5842c25da441d6c581b53a5c60e0c2127ebafe0f746f8e15561a006c6c3be6a",
"colorama==0.4.6",
"coloredlogs==15.0.1",
"colorlog==6.8.2",
"contourpy==1.3.0",
"cycler==0.12.1",
"datasets==2.21.0",
"deprecation==2.1.0",
"diffusers==0.30.2",
"dill==0.3.8",
"diskcache==5.6.3",
"einops==0.4.1",
"exceptiongroup==1.2.2",
"facexlib==0.3.0",
"fastapi==0.94.0",
"ffmpy==0.4.0",
"filelock==3.15.4",
"filterpy==1.4.5",
"flatbuffers==24.3.25",
"fonttools==4.53.1",
"frozenlist==1.4.1",
"fsspec==2024.6.1",
"ftfy==6.2.3",
"gitdb==4.0.11",
"GitPython==3.1.32",
"gradio==3.41.2",
"gradio_client==0.5.0",
"greenlet==3.0.3",
"h11==0.12.0",
"httpcore==0.15.0",
"httpx==0.24.1",
"huggingface-hub==0.24.6",
"humanfriendly==10.0",
"idna==3.8",
"imageio==2.35.1",
"importlib_metadata==8.4.0",
"importlib_resources==6.4.4",
"inflection==0.5.1",
"intel-openmp==2021.4.0",
"Jinja2==3.1.4",
"jsonmerge==1.8.0",
"jsonschema==4.23.0",
"jsonschema-specifications==2023.12.1",
"kiwisolver==1.4.6",
"kornia==0.6.7",
"lark==1.1.2",
"lazy_loader==0.4",
"lightning-utilities==0.11.7",
"llvmlite==0.43.0",
"Mako==1.3.5",
"MarkupSafe==2.1.5",
"matplotlib==3.9.2",
"mkl==2021.4.0",
"mpmath==1.3.0",
"multidict==6.0.5",
"multiprocess==0.70.16",
"narwhals==1.6.2",
"networkx==3.3",
"numba==0.60.0",
"numpy==1.26.2",
"olive-ai==0.6.2",
"omegaconf==2.2.3",
"onnx==1.16.2",
"onnxruntime==1.19.0",
"onnxruntime-directml==1.19.0",
"open-clip-torch==2.20.0",
"opencv-python==4.10.0.84",
"optimum==1.21.4",
"optuna==4.0.0",
"orjson==3.10.7",
"packaging==24.1",
"pandas==2.2.2",
"piexif==1.1.3",
"Pillow==9.5.0",
"pillow-avif-plugin==1.4.3",
"pip==24.2",
"protobuf==3.20.2",
"psutil==5.9.5",
"pyarrow==17.0.0",
"pydantic==1.10.18",
"pydub==0.25.1",
"pyparsing==3.1.4",
"pyreadline3==3.4.1",
"python-dateutil==2.9.0.post0",
"python-multipart==0.0.9",
"pytorch-lightning==1.9.4",
"pytz==2024.1",
"PyWavelets==1.7.0",
"PyYAML==6.0.2",
"referencing==0.35.1",
"regex==2024.7.24",
"requests==2.32.3",
"resize-right==0.0.2",
"rpds-py==0.20.0",
"safetensors==0.4.2",
"scikit-image==0.21.0",
"scipy==1.14.1",
"semantic-version==2.10.0",
"sentencepiece==0.2.0",
"setuptools==69.5.1",
"six==1.16.0",
"smmap==5.0.1",
"sniffio==1.3.1",
"spandrel==0.3.4",
"spandrel_extra_arches==0.1.1",
"SQLAlchemy==2.0.33",
"starlette==0.26.1",
"sympy==1.13.2",
"tbb==2021.13.1",
"tifffile==2024.8.30",
"timm==1.0.9",
"tokenizers==0.19.1",
"tomesd==0.1.3",
"torch==2.3.1",
"torch-directml==0.2.4.dev240815",
"torchdiffeq==0.2.3",
"torchmetrics==1.4.1",
"torchsde==0.2.6",
"torchvision==0.18.1",
"tqdm==4.66.5",
"trampoline==0.1.2",
"transformers==4.43.4",
"typing_extensions==4.12.2",
"tzdata==2024.1",
"urllib3==2.2.2",
"uvicorn==0.30.6",
"wcwidth==0.2.13",
"websockets==11.0.3",
"xxhash==3.5.0",
"yarl==1.9.8",
"zipp==3.20.1"
]
}
Console logs
Additional information
No response
The text was updated successfully, but these errors were encountered: