-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy patha2c.py
199 lines (154 loc) · 6.68 KB
/
a2c.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os
import numpy as np
import tensorflow as tf
# TUNABLE HYPERPARAMETERS FOR A2C TRAINING
VF_COEFF=0.5
ENTROPY_COEFF=0.01
MAX_GRAD_NORM=0.5
LR=7e-4
EPSILON=1e-5
ALPHA=0.99
def cat_entropy(logits):
a0 = logits - tf.reduce_max(logits, 1, keep_dims=True)
ea0 = tf.exp(a0)
z0 = tf.reduce_sum(ea0, 1, keep_dims=True)
p0 = ea0 / z0
return tf.reduce_sum(p0 * (tf.log(z0) - a0), 1)
# Basic baseline policy
class CnnPolicy(object):
def __init__(self, sess, ob_space, ac_space, nbatch, nsteps, reuse=False):
nw, nh, nc = ob_space
nact = ac_space.n
X = tf.placeholder(tf.float32, [None, nw, nh, nc]) #obs
with tf.variable_scope("model", reuse=reuse):
conv1 = tf.layers.conv2d(activation=tf.nn.relu,
inputs=X,
filters=16,
kernel_size=[3,3],
strides=[1,1],
padding='VALID')
conv2 = tf.layers.conv2d(activation=tf.nn.relu,
inputs=conv1,
filters=16,
kernel_size=[3,3],
strides=[2,2],
padding='VALID')
h = tf.layers.dense(tf.layers.flatten(conv2), 256, activation=tf.nn.relu)
with tf.variable_scope('pi'):
pi = tf.layers.dense(h, nact,
activation=None,
kernel_initializer=tf.random_normal_initializer(0.01),
bias_initializer=None)
with tf.variable_scope('v'):
vf = tf.layers.dense(h, 1,
activation=None,
kernel_initializer=tf.random_normal_initializer(0.01),
bias_initializer=None)[:, 0]
# Sample action. `pi` is like the logits
u = tf.random_uniform(tf.shape(pi))
self.a0 = tf.argmax(pi- tf.log(-tf.log(u)), axis=-1)
# Get the negative log likelihood
one_hot_actions = tf.one_hot(self.a0, pi.get_shape().as_list()[-1])
self.neglogp0 = tf.nn.softmax_cross_entropy_with_logits(
logits=pi,
labels=one_hot_actions)
self.X = X
self.pi = pi
self.vf = vf
def step(self, sess, ob):
a, v, neglogp = sess.run([self.a0, self.vf, self.neglogp0], {self.X:ob})
return a, v, neglogp
def value(self, sess, ob):
v = sess.run(self.vf, {self.X:ob})
return v
# Next two methods are required when we will have to generate the imaginations later in the I2A
# code.
def transform_input(self, X, sess):
return [X]
def get_inputs(self):
return [self.X]
# generic graph for a2c.
class ActorCritic(object):
def __init__(self, sess, policy, ob_space, ac_space, nenvs, nsteps, should_summary):
self.sess = sess
nact = ac_space.n
nbatch = nenvs*nsteps
self.actions = tf.placeholder(tf.int32, [nbatch])
self.advantages = tf.placeholder(tf.float32, [nbatch])
self.rewards = tf.placeholder(tf.float32, [nbatch])
self.step_model = policy(self.sess, ob_space, ac_space, nenvs, 1, reuse=False)
self.train_model = policy(self.sess, ob_space, ac_space, nenvs*nsteps, nsteps, reuse=True)
# Negative log probability of actions
neglogpac = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.train_model.pi,
labels=self.actions)
# Policy gradient loss
self.pg_loss = tf.reduce_mean(self.advantages * neglogpac)
# Value function loss
self.vf_loss = tf.reduce_mean(tf.square(tf.squeeze(self.train_model.vf) - self.rewards) / 2.0)
self.entropy = tf.reduce_mean(cat_entropy(self.train_model.pi))
self.loss = self.pg_loss - (self.entropy * ENTROPY_COEFF) + (self.vf_loss * VF_COEFF)
with tf.variable_scope('model'):
params = tf.trainable_variables()
grads = tf.gradients(self.loss, params)
if MAX_GRAD_NORM is not None:
grads, grad_norm = tf.clip_by_global_norm(grads, MAX_GRAD_NORM)
grads = list(zip(grads, params))
trainer = tf.train.RMSPropOptimizer(learning_rate=LR, decay=ALPHA,
epsilon=EPSILON)
self.opt = trainer.apply_gradients(grads)
# Tensorboard
if should_summary:
tf.summary.scalar('Loss', self.loss)
tf.summary.scalar('Policy gradient loss', self.pg_loss)
tf.summary.scalar('Value function loss', self.vf_loss)
name_scope = tf.contrib.framework.get_name_scope()
# Used if we are loading in a scope different than what we saved in.
def fix_tf_name(name, name_scope=None):
if name_scope is not None:
name = name[len(name_scope) + 1:]
return name.split(':')[0]
if len(name_scope) != 0:
params = {fix_tf_name(v.name, name_scope): v for v in params}
else:
params = {fix_tf_name(v.name): v for v in params}
self.saver = tf.train.Saver(params, max_to_keep=15)
# generic training code for one iteration.
def train(self, obs, rewards, masks, actions, values, step, summary_op=None):
advs = rewards - values
feed_dict = {
self.actions: actions,
self.advantages: advs,
self.rewards: rewards
}
inputs = self.train_model.get_inputs()
mapped_input = self.train_model.transform_input(obs, self.sess)
for transformed_input, inp in zip(mapped_input, inputs):
feed_dict[inp] = transformed_input
ret_vals = [
self.loss,
self.pg_loss,
self.vf_loss,
self.entropy,
self.opt,
]
if summary_op is not None:
ret_vals.append(summary_op)
results = self.sess.run(
ret_vals,
feed_dict = feed_dict
)
return results
def act(self, obs):
return self.step_model.step(self.sess, obs)
def critique(self, obs):
return self.step_model.value(self.sess, obs)
def save(self, path, name):
if not os.path.exists(path):
os.makedirs(path)
self.saver.save(self.sess, path + '/' + name)
def load(self, full_path):
self.saver.restore(self.sess, full_path)
def get_actor_critic(sess, nenvs, nsteps, ob_space, ac_space,
policy, should_summary=True):
actor_critic = ActorCritic(sess, policy, ob_space, ac_space, nenvs, nsteps, should_summary)
return actor_critic