-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPSF.py
175 lines (146 loc) · 5.87 KB
/
PSF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
from astropy.io import fits
import numpy as np
import matplotlib.pyplot as plt
import math
import os
import scipy.optimize
import scipy.stats
#THETA E PHI TEORICI
theta_th = 30.
phi_th = 225.
energy = 100. #MeV
#./theta'+str(int(theta_th))+'phi'+str(int(phi_th))+'onlycal/kalman_output/eAST211112021_CLUSTER_100000ph_Point_MONO_UNI_100MeV_'+str(int(theta_th))+'_'+str(int(phi_th))+'_PFIND_1_5.dat
#eAST211112021_CLUSTER_100000ph_Point_MONO_UNI_100MeV_30_225.0_PFIND_1_5.dat
with open('./theta'+str(int(theta_th))+'phi'+str(int(phi_th))+'onlycal/kalman_output/eAST211112021_CLUSTER_100000ph_Point_MONO_UNI_100MeV_'+str(int(theta_th))+'_'+str(int(phi_th))+'_PFIND_1_5.dat') as f:
f=[x.strip() for x in f if x.strip()]
data=[tuple(map(float,x.split())) for x in f[0:]]
event=[x[0] for x in data]
theta=[x[1] for x in data]
phi=[x[2] for x in data]
sph_dist_list = []
i = 0
while i< len(event)-1:
#print('ev',int(event[i]), 'th',theta[i], 'ph',phi[i])
if ((theta[i] == theta_th) and (phi[i] == phi_th)):
print('distanza sferica = 0')
if ((str(theta[i]) == 'nan') or (str(phi[i]) == 'nan')):
i = i +1
if ((str(theta[i]) == 'nan') and (str(phi[i]) == 'nan')):
i = i +1
#DISTANZA SFERICA
sph_dist = math.acos((math.sin(theta[i])*math.sin(theta_th)*math.cos(phi[i] - phi_th) + math.cos(theta[i])*math.cos(theta_th)))
#print(i, sph_dist)
sph_dist_list.append(sph_dist)
i = i +1
#ORDINAMENTO VETTORE
sph_dist_list = np.sort(sph_dist_list)
#68% ----> 1 sigma
j = int(len(sph_dist_list)/100.*68.)
#print('jesimo elemento al 68 percento', j)
psf = sph_dist_list[j]
errore = int(math.sqrt(j))
#print('errore sulla j',errore)
err_inf = j-errore
err_sup = j+errore
#print('errori inf e sup sulle j', err_inf, err_sup)
psf_inf = sph_dist_list[err_inf]
psf_sup = sph_dist_list[err_sup]
#print('corrispondenti psf', psf_inf, psf_sup)
psf_error_inf = psf-psf_inf
psf_error_sup = -(psf-psf_sup)
#print(psf_error_inf, psf_error_sup)
media_errore = (psf_error_inf+psf_error_sup)/2.
#print('errore medio',media_errore)
#CONTROLLO VETTORE ORDINATO
#print(len(sph_dist_list))
#i = 0
#while i< len(sph_dist_list):
# print(i, sph_dist_list[i])
# i = i +1
print('La PSF dello strumento e'' '+str(psf)+' +- '+str(media_errore))+' gradi '
#j = 0
#while j < len(sph_dist_list):
# counts = conteggi/(math.pi*(sph_dist_list[i])**2)
n_bins = 20
# creare l istogramma e normalizzare
N_array, bin_array = np.histogram(sph_dist_list, bins=n_bins)
norm_N = np.zeros(len(N_array)) # creo il vettore vuoto per gli N normalizzati
err_norm_N = np.zeros(len(N_array)) # creo il vettore vuoto per gli errori propagati in asse Y
err_theta = np.zeros(len(N_array)) # creo il vettore vuoto per gli errori in asse X
theta_array = np.zeros(len(N_array)) # creo il vettore vuoto per l array di theta in asse X
y_king_arr = np.zeros(len(sph_dist_list))
for jn in xrange(len(N_array)):
err_theta[jn] = (bin_array[jn+1] - bin_array[jn])/2.
theta_array[jn] = bin_array[jn] + err_theta[jn]
theta_bin = bin_array[jn+1] - bin_array[jn] # la larghezza del bin
area = math.pi*((sph_dist_list[jn])**2)
theta_bin_norm = theta_bin*area
norm_N[jn] = float(N_array[jn])/theta_bin_norm # divido per la larghezza del bin
err_norm_N[jn] = (np.sqrt(float(N_array[jn])))/theta_bin_norm # stessa cosa per l errore
norm_N_bis = []
err_norm_N_bis = []
err_theta_bis = []
theta_array_bis = []
theta_array_bis_x_arr = []
i = 0
while i < len(N_array)-1:
norm_N_bis.append(norm_N[i])
err_norm_N_bis.append(err_norm_N[i])
err_theta_bis.append(err_theta[i])
theta_array_bis.append(theta_array[i])
i = i +1
norm_N_bis = np.array(norm_N_bis)
err_norm_N_bis = np.array(err_norm_N_bis)
err_theta_bis = np.array(err_theta_bis)
theta_array_bis = np.array(theta_array_bis)
s_p_e = math.sqrt(((3.5*((energy/100.)**(-0.8)))**2)+(0.15**2))
#print(s_p_e)
i = 0
while i<len(theta_array_bis):
theta_array_bis_x = theta_array_bis[i]/s_p_e
theta_array_bis_x_arr.append(theta_array_bis_x)
i = i + 1
def king(x, f, sigma, gamma, sigma_t, gamma_t):
y = f*((1./(2.*math.pi*(sigma**2)))*(1.-(1./gamma))*(1.+(x**2/(2.*(sigma**2)*gamma)))**(-gamma))+(1-f)*((1./(2.*math.pi*(sigma_t**2)))*(1.-(1./gamma_t))*(1.+(x**2/(2.*(sigma_t**2)*gamma_t)))**(-gamma_t))
#y = (1./(2.*math.pi*(sigma**2)))*(1.-(1./gamma))*(1.+(x**2/(2.*(sigma**2)*gamma)))**(-gamma)
return y
p, cov = scipy.optimize.curve_fit(king, theta_array_bis_x_arr, norm_N_bis/max(norm_N_bis))
#print(p)
#print(cov)
f = p[0]
sigma = p[1]
gamma = p[2]
sigma_t = p[3]
gamma_t = p[4]
y_arr = []
i = 0
while i<len(theta_array_bis_x_arr):
y = king(theta_array_bis_x_arr[i],f, sigma, gamma, sigma_t, gamma_t)
y_arr.append(y)
i = i +1
y_arr = np.array(y_arr)
gdl = len(y_arr)-2
chi_quadro = (norm_N_bis[0]-y_arr[0])**2/y_arr[0]
i = 1
while i < len(y_arr):
chi_quadro = ((norm_N_bis[i]-y_arr[i])**2/y_arr[i]) + chi_quadro
i = i + 1
chi_quadro_rid = chi_quadro/gdl
#print(chi_quadro_rid)
#chi_quadro = scipy.stats.chisquare(norm_N_bis, y_arr, len(y_arr)-2)
#print(chi_quadro)
err_y = err_norm_N_bis/max(err_norm_N_bis*2)
#err_y = (max(err_norm_N_bis)-err_norm_N_bis)/max(err_norm_N_bis)
fig = plt.figure(1, figsize=(10, 6))
ax = fig.add_subplot(111)
ax.errorbar(theta_array_bis, norm_N_bis/max(norm_N_bis), label = 'Dati simulati', xerr= err_theta_bis, yerr = err_y, linestyle = 'None', color = 'red')
#norm_N/norm_N[0] yerr = err_norm_N_bis
ax.plot(theta_array_bis, y_arr, label = 'Modello di King',color = 'blue', linewidth = 2.5, linestyle = 'dotted')
ax.set_yscale("log") # set y log scale
#ax.set_xscale("log") # set x log scale
ax.legend(loc = 'upper right', fontsize = 11)
ax.set_ylim(0.0005,5.)
ax.set_title("eASTROGAM, E=100 MeV, $\\theta$ = 30$^\\circ$, $\\phi$ = 225$^\\circ$, $10^5$ fotoni")
ax.set_ylabel('Brillanza superficiale normalizzata [sr$^{-1}$]') # x label
ax.set_xlabel('Distanza sferica [$^\\circ$]') # y label
plt.show()