You can simply run python test.py
for running your submissions locally.
Few default environment variables:
TEST_DATASET_PATH
(default:data/test/
): path to the test dataset folder.RESULTS_DATASET_PATH
(default:data/results/
): path to the results dataset folder.INFERENCE_SETUP_TIMEOUT_SECONDS
(default:900
seconds): timeout for yourpredict_setup
function.INFERENCE_PER_MUSIC_TIMEOUT_SECONDS
(default:240
seconds): timeout for yourpredict
function.
python test.py
Directory structure after running will look something like:
.
├── test
│ ├── SS_008
│ │ └── mixture.wav
│ └── SS_018
│ └── mixture.wav
└── results
├── SS_008
│ ├── bass.wav
│ ├── drums.wav
│ ├── mixture.wav
│ ├── other.wav
│ └── vocals.wav
└── SS_018
├── bass.wav
├── drums.wav
├── mixture.wav
├── other.wav
└── vocals.wav
You can also calculate scores for your local evaluation by running:
python score.py
This will compare files present in test/
folder with results/
folder for SDR calculation.
def sdr(references, estimates):
# compute SDR for one song
delta = 1e-7 # avoid numerical errors
num = np.sum(np.square(references), axis=(1, 2))
den = np.sum(np.square(references - estimates), axis=(1, 2))
num += delta
den += delta
return 10 * np.log10(num / den)