-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_classifier.py
204 lines (154 loc) · 7.47 KB
/
train_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# Import library
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import torch.nn.functional as F
import sys
import configparam
import time
# Import pretrained victim models
from models import *
# Import DataLoaders
from dataloaders.amigos_cnn_loader import amigos_cnn_loader
from dataloaders.deap_cnn_loader import deap_cnn_loader
from dataloaders.physionet_cnn_loader import physionet_cnn_loader
from dataloaders.ner2015_cnn_loader import ner2015_cnn_loader
# K-folds validation
from sklearn.model_selection import KFold
k_folds = 5
def train(param):
# Define Hyper-parameters
param.PrintConfig()
learning_rate = param.learning_rate
num_epoch = param.num_epoch
batch_size = param.batch_size
# Load Dataset
if param.dataset == 'amigos':
data_set = amigos_cnn_loader(param)
elif param.dataset == 'deap':
data_set = deap_cnn_loader(param)
elif param.dataset == 'physionet':
data_set = physionet_cnn_loader(param)
elif param.dataset == 'ner2015':
data_set = ner2015_cnn_loader(param)
# Define the K-fold Cross Validator
kfold = KFold(n_splits=k_folds, shuffle=True, random_state=0)
for fold, (train_ids, test_ids) in enumerate(kfold.split(data_set)):
res_list_test = np.array([]).reshape((0, 3))
# Print fold info
print('-----------------------')
print(f'FOLD {fold}')
print('-----------------------')
# Select sample elements randomly
train_subsampler = torch.utils.data.SubsetRandomSampler(train_ids)
test_subsampler = torch.utils.data.SubsetRandomSampler(test_ids)
# Define data loaders for training and testing data in this fold
train_loader = torch.utils.data.DataLoader(data_set, batch_size=batch_size, sampler=train_subsampler, shuffle=False, num_workers=12)
test_loader = torch.utils.data.DataLoader(data_set, batch_size=batch_size, sampler=test_subsampler, shuffle=False, num_workers=12)
# set model
if param.model == 'eegnet':
print('Model: EEGNet')
model = EEGNet(param.num_channel, param.num_length, param.num_class)
optimizer = optim.Adam(model.parameters(), lr=learning_rate, weight_decay=1e-3)
elif param.model == 'sconvnet':
print('Shallow Conv Net')
model = ShallowConvNet(param.num_channel, param.num_length, param.num_class)
optimizer = optim.Adam(model.parameters(), lr=learning_rate, weight_decay=5e-3)
elif param.model == 'dconvnet':
print('Deep Conv Net')
model = DeepConvNet(param.num_channel, param.num_length, param.num_class)
optimizer = optim.Adam(model.parameters(), lr=learning_rate, weight_decay=5e-3)
elif param.model == 'resnet':
print('ResNet')
model = ResNet8(param.num_class)
# model = EEGResNet(in_chans=param.num_channel, n_classes=param.num_class, input_window_samples=param.num_length)
elif param.model == 'tidnet':
print('TIDNet')
model = TIDNet(in_chans=param.num_channel, n_classes=param.num_class, input_window_samples=param.num_length)
optimizer = optim.Adam(model.parameters(), lr=learning_rate, weight_decay=1e-4)
elif param.model == 'vgg':
print('VGG')
model = vgg_eeg(pretrained=False, num_classes=param.num_class)
optimizer = optim.Adam(model.parameters(), lr=learning_rate, weight_decay=1e-3)
model.cuda()
loss_total = 0.0
# Define optimizer and scheduler
loss_func = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
scheduler = lr_scheduler.StepLR(optimizer, step_size=50, gamma=0.5)
for i in range(num_epoch):
loss_epoch = 0.0
cnt_epoch = 0
num_positive = 0
num_total = 0
t0 = time.time()
for train_x, train_y in train_loader:
model.train()
train_x = train_x.cuda()
train_y = train_y.cuda()
# Signal augmentation by adding gaussian noises, then clip into proper range
sigma = 0.01
add_noise = torch.normal(0, sigma, (train_x.shape[0], train_x.shape[1], train_x.shape[2], train_x.shape[3]))
train_x = torch.clamp(train_x + add_noise.cuda(), min=0.0, max=1.0)
optimizer.zero_grad()
output = model.forward(train_x)
loss = loss_func(output, train_y)
loss.backward()
optimizer.step()
output_sm = F.softmax(output, dim=1)
_, output_index = torch.max(output_sm, 1)
res = output_index.cpu().detach().numpy()
tp = (res == train_y.cpu().detach().numpy()).sum()
num_positive = num_positive + tp
num_total = num_total + res.shape[0]
loss_epoch = loss_epoch + loss.detach()
cnt_epoch = cnt_epoch + 1
scheduler.step()
train_accuracy = num_positive / num_total
loss_total = loss_total + (loss_epoch / cnt_epoch)
num_positive = 0
num_total = 0
for test_x, test_y in test_loader:
test_x = test_x.cuda()
test_y = test_y.cuda()
with torch.no_grad():
output = model.forward(test_x)
output_sm = F.softmax(output, dim=1)
_, output_index = torch.max(output_sm, 1)
res = output_index.cpu().detach().numpy()
tp = (res == test_y.cpu().detach().numpy()).sum()
num_positive = num_positive + tp
num_total = num_total + res.shape[0]
test_accuracy = num_positive / num_total
t1 = time.time()
print(
'epoch:{} train loss:{:.4f} loss_avg:{:.4f} train accuracy:{:.4f} test accuracy:{:.4f} time:{:.4f}'.format(
i + 1, (loss_epoch / cnt_epoch), (loss_total/(i+1)), train_accuracy, test_accuracy, (t1 - t0),
))
# Save result
# res_list_test = np.append(res_list_test, np.array([[i + 1, train_accuracy,test_accuracy]]), axis=0)
# np.savetxt(param.result_path + f'_{fold}_train_result.txt', res_list_test, fmt='%1.4f')
# Save models with 5 epochs intervals
if i != 0 and (i + 1) % 5 == 0:
save_file_name = param.weight_path + f'fold{fold}_' + param.weight_prefix + '_e{:04d}.pth'.format(i + 1)
#save_file_name = param.weight_path + f'fold{fold}_' + param.weight_prefix + '.pth'
#save_file_name = param.weight_path + param.weight_prefix + '_e{:04d}.pth'.format(i + 1)
torch.save(model.state_dict(), save_file_name)
print('saved at' + save_file_name)
if __name__ == '__main__':
no_gpu = 0
if len(sys.argv) > 1:
conf_file_name = sys.argv[1]
if len(sys.argv) > 2:
no_gpu = int(sys.argv[2])
else:
# conf_file_name = './config/train_amigos_eegnet.cfg'
# conf_file_name = './config/train_amigos_sconvnet.cfg'
conf_file_name = './config/train_deap_tidnet.cfg'
conf = configparam.ConfigParam()
conf.LoadConfiguration(conf_file_name)
torch.cuda.set_device(no_gpu)
print('GPU allocation ID: %d'%no_gpu)
train(conf)