forked from pcheng2/TSRL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtsrl_algos.py
284 lines (250 loc) · 12.8 KB
/
tsrl_algos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import sys
import os
sys.path.append(os.getcwd())
import copy
import torch
import torch.nn as nn
import wandb
import gym
import os
import numpy as np
import d4rl
from torch.distributions import Normal
from actor_critic_net import Actor_deterministic, Double_Critic
from sample_from_dataset import ReplayBuffer
import pickle
import datetime
class TSRL:
def __init__(self,
env_name,
num_hidden=512,
gamma=0.999,
tau=0.005,
policy_noise=0.2,
noise_clip=0.5,
policy_freq=2,
alpha=2.5,
ratio=1,
seed=0,
lr_actor=3e-4,
lr_critic=3e-4,
quantile=1,
z_act_weight = 0,
inconsis_weight = 0,
batch_size=256,
drop_prob=0.5,
eval_iter=1,
store_prams=False,
augment=False,
device='cpu'):
"""
Paper:
env_name: your gym environment name
gamma: discounting factor of the cumulated reward
policy_freq: delayed policy update frequency
alpha: the hyper-parameter in equation
z_act_weight: weight of latent actions in policy contraints term
inconsis_weight: weight of T-sym inconsistency in policy contraints term
quantile: data augmentation threshold
"""
super(TSRL, self).__init__()
# prepare the environment
self.env_name = env_name
self.env = gym.make(env_name)
num_state = self.env.observation_space.shape[0]
num_action = self.env.action_space.shape[0]
self.augment = augment
self.quantile = quantile
self.z_act_weight = z_act_weight
self.inconsis_weight = inconsis_weight
self.store_prams = store_prams
path_dynamic_ae_network = 'TDM/tdm_models/tdm-Env_{}-ratio_{}/AE_params.pkl'.format(env_name, ratio)
path_bwd_dynamic = 'TDM/tdm_models/tdm-Env_{}-ratio_{}/Dyna_bwd_params.pkl'.format(env_name, ratio)
path_fwd_dynamic = 'TDM/tdm_models/tdm-Env_{}-ratio_{}/Dyna_fwd_params.pkl'.format(env_name, ratio)
self.device = device
# hyper-parameters
self.gamma = gamma
self.tau = tau
self.lr_actor = lr_actor
self.lr_critic = lr_critic
self.policy_noise = policy_noise
self.policy_freq = policy_freq
self.evaluate_freq = 3000
self.noise_clip = noise_clip
self.alpha = alpha
self.batch_size = batch_size
self.max_action = 1.
self.total_it = 0
self.actor_aug_count = 0
self.eval_iter = eval_iter
self.drop_prob = drop_prob
self.seed = seed
# set seed
self.env.seed(seed)
self.env.action_space.seed(seed)
torch.manual_seed(seed)
self.latent_state_dim = self.env.observation_space.shape[0] #15 8
self.latent_action_dim = self.env.action_space.shape[0] #5
self.replay_buffer = ReplayBuffer(num_state,
num_action,
quantile,
path_dynamic_ae_network=path_dynamic_ae_network,
path_bwd_dynamic = path_bwd_dynamic,
path_fwd_dynamic = path_fwd_dynamic,
device=self.device)
if ratio != 1:
partial_path = 'utils/small_samples/{}-ratio-{}.npy'.format(env_name,int(ratio))
self.dataset = np.load(partial_path, allow_pickle=True)[0]
else:
dataset = self.env.get_dataset()
self.dataset = self.replay_buffer.split_dataset(self.env, dataset, ratio=ratio)
self.s_mean, self.s_std, self.norm_std, self.thresh, self.consis_max, self.consis_min, self.consis_mean, self.z_mean, self.z_std, self.z_s_mean, self.z_s_std, self.z_a_std = self.replay_buffer.convert_D4RL(self.dataset, ratio, scale_rewards=False, scale_state=True)
self.dynamic_ae_network = pickle.load(open(path_dynamic_ae_network, 'rb'))
self.fwd_dynamic = pickle.load(open(path_fwd_dynamic, 'rb'))
self.bwd_dynamic = pickle.load(open(path_bwd_dynamic, 'rb'))
# prepare the actor and critic
self.actor_net = Actor_deterministic(num_state, num_action, num_hidden, self.drop_prob, device).float().to(device)
self.actor_target = copy.deepcopy(self.actor_net)
self.actor_optim = torch.optim.Adam(self.actor_net.parameters(), lr=3e-4)
self.critic_net = Double_Critic(self.latent_state_dim, self.latent_action_dim, num_hidden, self.drop_prob, device).float().to(device)
self.critic_target = copy.deepcopy(self.critic_net)
self.critic_optim = torch.optim.Adam(self.critic_net.parameters(), lr=3e-4)
self.current_time = datetime.datetime.now()
logdir_name = f"./Model/{self.env_name}/{self.current_time}+{self.seed}"
os.makedirs(logdir_name)
def tsrl_learn(self, total_time_step=1e+5):
while self.total_it <= total_time_step:
self.total_it += 1
# sample data
state, action, next_state, current_z_state, current_z_action, next_z_state, reward, not_done = self.replay_buffer.sample(self.batch_size)
# update Critic
critic_loss_pi = self.train_Q_pi(action,
current_z_state,
current_z_action,
next_state,
reward,
not_done)
# delayed policy update
if self.total_it % self.policy_freq == 0:
actor_loss, latent_act_loss, inconsis_loss, aug_consist_loss, Q_pi_mean = self.train_actor(state,
next_state,
current_z_action,
next_z_state)
if self.total_it % self.evaluate_freq == 0:
evaluate_reward = self.rollout_evaluate()
wandb.log({"actor_loss": actor_loss,
"latent_act_loss": latent_act_loss,
"inconsis_loss":inconsis_loss,
"Q_pi_loss": critic_loss_pi,
"Q_pi_mean": Q_pi_mean,
"aug_consist_loss": aug_consist_loss,
"evaluate_rewards": evaluate_reward,
"aug_thresh": self.thresh,
"actor_aug_count": self.actor_aug_count,
"it_steps": self.total_it
})
if self.store_prams:
self.save_parameters(evaluate_reward)
def train_Q_pi(self,
action,
current_z_state,
current_z_action,
next_state,
reward,
not_done):
with torch.no_grad():
# Select action according to policy and add clipped noise
noise = (torch.randn_like(action) * self.policy_noise).clamp(-self.noise_clip, self.noise_clip)
pi_next_action = (self.actor_target(next_state) + noise).clamp(-self.max_action, self.max_action)
_, pi_next_z_obs, pi_next_z_action = self.dyna_encoding(self.dynamic_ae_network, next_state, pi_next_action)
# Compute the target Q value
target_Q1, target_Q2 = self.critic_target(pi_next_z_obs, pi_next_z_action)
target_Q = torch.min(target_Q1, target_Q2)
target_Q = reward + not_done * self.gamma * target_Q
Q1, Q2 = self.critic_net(current_z_state, current_z_action)
# Critic loss
critic_loss = nn.MSELoss()(Q1, target_Q) + nn.MSELoss()(Q2, target_Q)
# Optimize Critic
self.critic_optim.zero_grad()
critic_loss.backward()
self.critic_optim.step()
return critic_loss.cpu().detach().numpy().item()
def train_actor(self, state, next_state, current_z_action, next_z_s):
action_pi = self.actor_net(state)
next_action_pi = self.actor_net(next_state)
pi_z, pi_z_s, pi_z_action= self.dyna_encoding(self.dynamic_ae_network, state, action_pi)
_, pi_next_z_obs, _= self.dyna_encoding(self.dynamic_ae_network, next_state, next_action_pi)
pi_delta_z_s = self.fwd_dynamic(pi_z)
pred_next_z_s = pi_z_s + pi_delta_z_s
pred_zp = torch.cat((pred_next_z_s, pi_z_action), -1)
pi_delta_sp = self.bwd_dynamic(pred_zp)
pred_z_s = pi_delta_sp + pi_next_z_obs
inconsis_loss = nn.MSELoss()(pi_z_s, pred_z_s)
latent_act_loss = nn.MSELoss()(pi_z_action, current_z_action)
if self.augment:
self.epsilon = Normal(self.z_s_mean, self.norm_std).sample().detach()
aug_z_state = pi_z_s + self.epsilon
aug_next_z_state = next_z_s + self.epsilon
aug_z = torch.cat((aug_z_state, pi_z_action), -1)
pred_aug_delta_z_s = self.fwd_dynamic(aug_z)
epsilon_z_s = pred_aug_delta_z_s - pi_delta_z_s
pred_aug_z_next_state = aug_next_z_state + epsilon_z_s
aug_zp = torch.cat((pred_aug_z_next_state, pi_z_action), -1)
pred_aug_delta_zp = self.bwd_dynamic(aug_zp)
pred_aug_z_state = pred_aug_delta_zp + aug_next_z_state
aug_consist_loss = nn.MSELoss()(aug_z_state, pred_aug_z_state).detach()
if aug_consist_loss <= self.thresh:
self.actor_aug_count += 1
pi_z_s = torch.cat((pi_z_s, aug_z_state), 0)
pi_z_action = torch.cat((pi_z_action, pi_z_action), 0)
Q1, Q2 = self.critic_net(pi_z_s, pi_z_action)
Q_pi = torch.min(Q1, Q2)
lmbda = self.alpha / Q_pi.abs().mean().detach()
actor_loss = -lmbda * Q_pi.mean() + self.z_act_weight * latent_act_loss + self.inconsis_weight * inconsis_loss
# Optimize Actor
self.actor_optim.zero_grad()
actor_loss.backward()
self.actor_optim.step()
# update the frozen target models
for param, target_param in zip(self.critic_net.parameters(), self.critic_target.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
for param, target_param in zip(self.actor_net.parameters(), self.actor_target.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
return actor_loss.cpu().detach().numpy().item(), \
latent_act_loss.cpu().detach().numpy().item(), \
inconsis_loss.cpu().detach().numpy().item(), \
aug_consist_loss.cpu().detach().numpy().item(), \
Q_pi.mean().cpu().detach().numpy().item()
def rollout_evaluate(self):
"""
policy evaluation function
:return: the evaluation result
"""
ep_rews = []
for _ in range(self.eval_iter):
scores = 0
state = self.env.reset()
while True:
state = (state - self.s_mean) / (self.s_std + 1e-5)
action = self.actor_net(state).cpu().detach().numpy()
state, reward, done, _ = self.env.step(action[0])
scores += reward
if done:
break
scores = d4rl.get_normalized_score(env_name=self.env_name, score=scores) * 100
ep_rews.append(scores)
ep_rewards_mean = np.mean(ep_rews)
return ep_rewards_mean
def save_parameters(self, reward):
logdir_name = f"./Model/{self.env_name}/{self.current_time}+{self.seed}/{self.total_it}+{reward}"
os.makedirs(logdir_name)
q_logdir_name = f"./Model/{self.env_name}/{self.current_time}+{self.seed}/{self.total_it}+{reward}/q.pth"
a_logdir_name = f"./Model/{self.env_name}/{self.current_time}+{self.seed}/{self.total_it}+{reward}/actor.pth"
torch.save(self.critic_net.state_dict(), q_logdir_name)
torch.save(self.actor_net.state_dict(), a_logdir_name)
def dyna_encoding(self,network,state,action):
z_input = torch.cat((state,action),1)
z, _, _ = network(z_input)
z_state = z[:,:self.latent_state_dim]
z_act = z[:,self.latent_state_dim:]
return z, z_state, z_act