forked from Facebear-ljx/PROTO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
209 lines (164 loc) · 6.75 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
from jax.config import config
import os
from typing import Tuple
import datetime
import gym
import numpy as np
import tqdm
import time
import absl
import sys
from absl import app, flags
from ml_collections import config_flags
from tensorboardX import SummaryWriter
from dataclasses import dataclass
import wrappers
from dataset_utils import D4RLDataset, split_into_trajectories
from evaluation import evaluate
from learner import Learner
import wandb
import warnings
FLAGS = flags.FLAGS
flags.DEFINE_string('save_dir', './tmp/', 'Outputs save path')
flags.DEFINE_string('load_dir', './tmp/', 'Checkpoint load path')
flags.DEFINE_string('env_name', 'halfcheetah-expert-v2', 'Environment name.')
# flags.DEFINE_string('save_dir', './tmp/', 'Tensorboard logging dir.')
flags.DEFINE_integer('seed', 42, 'Random seed.')
flags.DEFINE_integer('eval_episodes', 10,
'Number of episodes used for evaluation.')
flags.DEFINE_integer('log_interval', 5000, 'Logging interval.')
flags.DEFINE_integer('eval_interval', 5000, 'Eval interval.')
flags.DEFINE_integer('batch_size', 256, 'Mini batch size.')
flags.DEFINE_float('temp', 1.0, 'Loss temperature')
flags.DEFINE_boolean('double', True, 'Use double q-learning')
flags.DEFINE_integer('max_steps', int(1e6), 'Number of training steps.')
flags.DEFINE_boolean('tqdm', True, 'Use tqdm progress bar.')
flags.DEFINE_boolean('vanilla', False, 'Use vanilla RL training')
flags.DEFINE_integer('sample_random_times', 0, 'Number of random actions to add to smooth dataset')
flags.DEFINE_boolean('grad_pen', False, 'Add a gradient penalty to critic network')
flags.DEFINE_float('lambda_gp', 1, 'Gradient penalty coefficient')
flags.DEFINE_float('max_clip', 7., 'Loss clip value')
flags.DEFINE_integer('num_v_updates', 1, 'Number of value updates per iter')
flags.DEFINE_boolean('log_loss', True, 'Use log gumbel loss')
flags.DEFINE_boolean('noise', False, 'Add noise to actions')
flags.DEFINE_float('noise_std', 0.1, 'Noise std for actions')
config_flags.DEFINE_config_file(
'config',
'default.py',
'File path to the training hyperparameter configuration.',
lock_config=False)
# config.update("jax_enable_x64", True)
# config.update("jax_debug_nans", True)
@dataclass(frozen=True)
class ConfigArgs:
sample_random_times: int
grad_pen: bool
noise: bool
noise_std: float
lambda_gp: int
max_clip: float
num_v_updates: int
log_loss: bool
def normalize(dataset):
trajs = split_into_trajectories(dataset.observations, dataset.actions,
dataset.rewards, dataset.masks,
dataset.dones_float,
dataset.next_observations)
def compute_returns(traj):
episode_return = 0
for _, _, rew, _, _, _ in traj:
episode_return += rew
return episode_return
trajs.sort(key=compute_returns)
dataset.rewards /= compute_returns(trajs[-1]) - compute_returns(trajs[0])
dataset.rewards *= 1000.0
def make_env_and_dataset(env_name: str,
seed: int) -> Tuple[gym.Env, D4RLDataset]:
env = gym.make(env_name)
env = wrappers.EpisodeMonitor(env)
env = wrappers.SinglePrecision(env)
env.seed(seed)
env.action_space.seed(seed)
env.observation_space.seed(seed)
dataset = D4RLDataset(env)
if 'antmaze' in FLAGS.env_name:
dataset.rewards -= 1.0
# See https://github.com/aviralkumar2907/CQL/blob/master/d4rl/examples/cql_antmaze_new.py#L22
# but I found no difference between (x - 0.5) * 4 and x - 1.0
elif ('halfcheetah' in FLAGS.env_name or 'walker2d' in FLAGS.env_name
or 'hopper' in FLAGS.env_name):
normalize(dataset)
return env, dataset
def main(_):
# tags = FLAGS.save_dir.split('/')[-1]
# wandb.init(project=FLAGS.env_name+'_exp_rl', entity='iq-learn', sync_tensorboard=True,
# reinit=True, settings=wandb.Settings(_disable_stats=True))
# wandb.config.update(flags.FLAGS)
ts_str = datetime.datetime.fromtimestamp(time.time()).strftime("%Y-%m-%d_%H-%M-%S")
save_dir = os.path.join(FLAGS.save_dir, ts_str)
hparam_str_dict = dict(seed=FLAGS.seed, env=FLAGS.env_name)
hparam_str = ','.join([
'%s=%s' % (k, str(hparam_str_dict[k]))
for k in sorted(hparam_str_dict.keys())
])
summary_writer = SummaryWriter(os.path.join(save_dir, 'tb',
hparam_str),
write_to_disk=True)
os.makedirs(save_dir, exist_ok=True)
env, dataset = make_env_and_dataset(FLAGS.env_name, FLAGS.seed)
kwargs = dict(FLAGS.config)
# wandb.config.update(kwargs)
# wandb.config.update({'base_dir': save_dir})
args = ConfigArgs(sample_random_times=FLAGS.sample_random_times,
grad_pen=FLAGS.grad_pen,
lambda_gp=FLAGS.lambda_gp,
noise=FLAGS.noise,
max_clip=FLAGS.max_clip,
num_v_updates=FLAGS.num_v_updates,
log_loss=FLAGS.log_loss,
noise_std=FLAGS.noise_std)
agent = Learner(FLAGS.seed,
env.observation_space.sample()[np.newaxis],
env.action_space.sample()[np.newaxis],
max_steps=FLAGS.max_steps,
loss_temp=FLAGS.temp,
double_q=FLAGS.double,
vanilla=FLAGS.vanilla,
args=args,
**kwargs)
print(f'Loading agent checkpoint from path: {FLAGS.load_dir}')
agent.load(FLAGS.load_dir)
best_eval_returns = -np.inf
eval_returns = []
num_episodes = 10
stats = {'return': [], 'length': []}
for i in range(num_episodes):
observation, done = env.reset(), False
steps = 0
while not done:
steps += 1
action = agent.sample_actions(observation, temperature=0.0)
observation, _, done, info = env.step(action)
env.render()
# if steps % 10 == 0:
# env.render()
ep_return = info['episode']['return']
print(f'Eval episode {i} with return: {ep_return}')
for k in stats.keys():
stats[k].append(info['episode'][k])
for k, v in stats.items():
stats[k] = np.mean(v)
eval_stats = stats
print(eval_stats['return'])
if eval_stats['return'] > best_eval_returns:
# Store best eval returns
best_eval_returns = eval_stats['return']
eval_returns.append((i, eval_stats['return']))
np.savetxt(os.path.join(FLAGS.save_dir, f'{FLAGS.seed}.txt'),
eval_returns,
fmt=['%d', '%.1f'])
# wandb.finish()
sys.exit(0)
raise SystemExit
if __name__ == '__main__':
app.run(main)