forked from KavinduUoM20/od-dashboard-revamp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
OD.py
582 lines (467 loc) · 20.6 KB
/
OD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
import streamlit as st
import pandas as pd
import numpy as np
from typing import List
import altair as alt
import matplotlib.pyplot as plt
import plotly.express as px
import subprocess
import sys
import os
import time
from streamlit_autorefresh import st_autorefresh
icon_path = 'https://aiesec.lk/data/dist/images/favicon.png'
st.set_page_config(
layout="wide",
page_title="OD Dashboard - AIESEC in Sri Lanka",
page_icon= icon_path,
)
# Load data outside of Streamlit app initialization
@st.cache_data(ttl=1800)
def load_data(data_url):
try:
data = pd.read_csv(data_url)
# Check if 'month_name' column exists
if 'month_name' not in data.columns:
st.error("Error: 'month_name' column not found in the CSV file.")
return None
data['month_name'] = pd.to_datetime(data['month_name'], format='%Y %B', errors='coerce').dt.strftime('%B %Y')
return data
except Exception as e:
st.error(f"An error occurred while loading data: {e}")
return None
# Main Data Source
data_url1 = 'https://docs.google.com/spreadsheets/d/e/2PACX-1vRifHGM_iqkAo_9yWFckhtQOu7J-ybWSTJppU_JBhYq-cQegFDqgezIB6X5c3dHAODXDvKJ__AUZzvC/pub?gid=0&single=true&output=csv'
data = load_data(data_url1)
# Sub Data Source
data_url2 = 'https://docs.google.com/spreadsheets/d/e/2PACX-1vQ4p6YJ0XKwY0AmS37dz_j7cuUG4uZYoZeFyCuWP0MBbjBgV7XXf2nqGompdTW-o-2x1CAxmIExoHXy/pub?gid=1230705189&single=true&output=csv'
data_core = load_data(data_url2)
# Ranks of Main Data Source
data_url3 = 'https://docs.google.com/spreadsheets/d/e/2PACX-1vTfr0Ohkx_-2hHXFzlztMkQKioFUpeMrehZKSoFgcNniHYUp5evKerCHR2TfSU7ASTmjAhKMVOqObWV/pub?gid=1230705189&single=true&output=csv'
data_rank = load_data(data_url3)
# Set up Streamlit app title
st.title('OD Dashboard - AIESEC in Sri Lanka')
# Get unique entity and month lists
unique_entities = data['entity'].unique()
entity_list = list(unique_entities)
unique_month = data['month_name'].unique()
month_list = list(unique_month)
function_list = ["FnL", "BD", "ER", "TM", "Brand", "EM", "IM", "iGV", "oGV", "iGTa", "iGTe", "oGTa", "oGTe", "DXP"]
# Sidebar for user selection
selected_entity = st.sidebar.selectbox('Select Entity', entity_list)
# Default selected month
default_month = "April 2024"
selected_month = st.sidebar.selectbox('Select Month', month_list, index=month_list.index(default_month))
# Check if the selected entity is "RAJARATA" and the selected month is before February 2024
if selected_entity == "RAJARATA" and month_list.index(selected_month) < month_list.index("February 2024"):
st.info("Data for RAJARATA is only available after February 2024 :') ")
st.stop()
# Filter data based on user selection
filtered_data = data[(data['entity'] == selected_entity) & (data['month_name'] == selected_month)]
filtered_data_entity = data[(data['entity'] == selected_entity)]
filtered_data2 = filtered_data_month = data[(data['month_name'] == selected_month)]
#defined colors
xdi_col="#f85c44"
hdi_col="#38c49c"
odi_col="#086cb4"
gen="#cccccc"
def plot_bubble_chart(filtered_data2):
# Bubble plot using Plotly
fig = px.scatter(filtered_data2, x='HDI', y='XDI', size='ODI', color='entity',
title='Bubble Plot', labels={'HDI': 'HDI', 'XDI': 'XDI', 'ODI': 'ODI'},
)
# Customize the layout
fig.update_layout(
showlegend=True,
legend_title_text='Entity',
xaxis_title='HDI',
yaxis_title='XDI',
xaxis=dict(range=[0, 1]), # Set x-axis range to [0, 1]
yaxis=dict(range=[0, 1]), # Set y-axis range to [0, 1]
paper_bgcolor='rgba(0,0,0,0)' # Set background color to transparent
)
# Display the plot using Streamlit
st.plotly_chart(fig, use_container_width=True)
def plot_score_line_chart(filtered_data, score_column, color):
# Melt the DataFrame to long format
melted_data = filtered_data.melt(id_vars=['month_name'], var_name='Entity', value_name='Score')
# Select the specified score column
score_data = melted_data[melted_data['Entity'] == score_column]
# Create a line chart using Altair
chart = alt.Chart(score_data).mark_line(color=color).encode(
x=alt.X('month_name:N', title='Month'),
y=alt.Y('Score:Q', title=f'{score_column} Score'),
tooltip=['month_name:N', 'Score:Q'] # Include Month and the selected score in the tooltip
).properties(
width=600,
height=400,
title=f'{score_column} Scores Over Time'
)
# Display the chart using Streamlit
st.altair_chart(chart, use_container_width=True)
def plot_score_bar_chart(filtered_data, score_column, color):
# Melt the DataFrame to long format
melted_data = filtered_data.melt(id_vars=['entity'], var_name='Function', value_name='Score')
# Select the specified score column
score_data = melted_data[melted_data['Function'] == score_column]
# Create a bar chart using Altair
chart = alt.Chart(score_data).mark_bar(opacity=0.7).encode(
x=alt.X('entity:N', title='Entity'),
y=alt.Y('Score:Q', title=f'{score_column} Score'),
color=alt.value(color), # Use the specified color
tooltip=['entity:N', 'Score:Q'] # Include Entity and the selected score in the tooltip
).properties(
width=600,
height=400,
title=f'{score_column} Scores by Entity'
)
# Display the chart using Streamlit
st.altair_chart(chart, use_container_width=True)
def gen_bar_chart(selected_entity, selected_month, data):
filtered_data = data[(data['month_name'] == selected_month) & (data['entity'] == selected_entity)]
melted_data = filtered_data.melt(id_vars=['entity'], var_name='Function', value_name='Score')
melted_data['Score'] = pd.to_numeric(melted_data['Score'], errors='coerce')
chart = alt.Chart(melted_data).mark_bar(opacity=0.7).encode(
x=alt.X('Function:N', title='Function'),
y=alt.Y('Score:Q', title='Score'),
tooltip=['Function:N', 'Score:Q'], # Include Function and Score in the tooltip
# color=alt.value('blue') # You can change the color if needed
).properties(
title=f'Scores vs Functions - {selected_entity} - {selected_month}'
)
# Calculate the average scores
filtered_data2 = data[data['month_name'] == selected_month]
pivot_data = filtered_data2.set_index('entity').T.drop('month_name')
pivot_data['Average'] = pivot_data.mean(axis=1)
function_average_data = pivot_data[['Average']].reset_index()
# Create a line chart for average scores
line_chart = alt.Chart(function_average_data.reset_index()).mark_line(strokeDash=[5, 5]).encode(
x=alt.X('index:N', title='Function'),
y=alt.Y('Average:Q', title='Average Score', axis=alt.Axis(titleColor='red', format=".2f")), # Format to two decimal places
tooltip=['index:N', alt.Tooltip('Average:Q', title='Average Score', format=".2f")], # Include Function and Average Score in the tooltip
)
# Add data points to the line chart
point_chart = alt.Chart(function_average_data.reset_index()).mark_point(color='red').encode(
x=alt.X('index:N'),
y=alt.Y('Average:Q', axis=alt.Axis(titleColor='red', format=".2f")), # Format to two decimal places
tooltip=['index:N', alt.Tooltip('Average:Q', title='Average Score', format=".2f")], # Include Function and Average Score in the tooltip
)
# Combine bar, line, and point charts
combined_chart = chart + line_chart + point_chart
st.altair_chart(combined_chart, use_container_width=True)
def display_kpi_metrics(selected_entity, selected_month, kpis, title, data):
# st.markdown(
# f"<h7 style='color: white;'>{title}</h7>",
# unsafe_allow_html=True
# )
# Filter data based on the selected entity and month
data = data[(data['entity'] == selected_entity) & (data['month_name'] == selected_month)]
# Get KPI values and names from the filtered data
kpi_values = data[kpis].values[0]
kpi_names = kpis
num_cols = 7 # Number of columns to display KPIs
num_kpis = len(kpi_values)
# Calculate the number of rows needed based on the number of KPIs and columns
num_rows = (num_kpis + num_cols - 1) // num_cols
# Iterate over the rows to display KPIs in rows of 7
for i in range(num_rows):
cols = st.columns(num_cols)
for j in range(num_cols):
idx = i * num_cols + j
if idx < num_kpis:
cols[j].markdown(
f"""
<div style="
background-color: #0076b6;
border-radius: 10px;
padding: 5px;
margin: 5px;
text-align: center; /* Center align text */
">
<p style="margin: 0;">{kpi_names[idx]}</p> <!-- Add margin: 0; to remove default margin -->
<h3 style="margin: 0;">{kpi_values[idx]}</h3> <!-- Add margin: 0; to remove default margin -->
</div>
"""
, unsafe_allow_html=True)
def filter_and_plot(selected_function, selected_criteria,selected_entity):
# Filter data based on selected function and criteria
filtered_data = data_core[(data_core['Function'] == selected_function) & (data_core['Criteria'] == selected_criteria)]
filtered_data = filtered_data.drop_duplicates()
selected_columns = selected_entity
melted_data = filtered_data.melt(id_vars=['month_name'], value_vars=selected_columns, var_name='Entity', value_name='Score')
# Create line chart using Altair
line_chart = alt.Chart(melted_data).mark_line().encode(
x='month_name',
y='Score',
color='Entity',
tooltip=['month_name', 'Entity', 'Score']
).properties(
width=600,
height=400,
title=f'{selected_function} Scores for {selected_criteria}'
)
# # Show the chart
st.altair_chart(line_chart, use_container_width=True)
def display_kpi_metrics2(selected_entity, selected_month, kpis, title, data):
# st.markdown(
# f"<h7 style='color: white;'>{title}</h7>",
# unsafe_allow_html=True
# )
# Filter data based on the selected entity and month
data = data[(data['entity'] == selected_entity) & (data['month_name'] == selected_month)]
# Get KPI values and names from the filtered data
kpi_values = data[kpis].values[0]
kpi_names = kpis
num_cols = 3 # Number of columns to display KPIs
num_kpis = len(kpi_values)
# Calculate the number of rows needed based on the number of KPIs and columns
num_rows = (num_kpis + num_cols - 1) // num_cols
# Iterate over the rows to display KPIs in rows of 7
for i in range(num_rows):
cols = st.columns(num_cols)
for j in range(num_cols):
idx = i * num_cols + j
if idx < num_kpis:
cols[j].markdown(
f"""
<div style="
background-color: #0076b6;
border-radius: 10px;
padding: 5px;
margin: 5px;
height: 215px;
display: flex;
flex-direction: column;
justify-content: center;
align-items: center;
text-align: center;
">
<p style="margin: 0;">{kpi_names[idx]}</p> <!-- Add margin: 0; to remove default margin -->
<h3 style="margin: 0;">{kpi_values[idx]}</h3> <!-- Add margin: 0; to remove default margin -->
</div>
"""
, unsafe_allow_html=True)
def display_kpi_metrics3(selected_entity, selected_month, kpis, title, data):
# Filter data based on the selected entity and month
data = data[(data['entity'] == selected_entity) & (data['month_name'] == selected_month)]
# Get KPI values and names from the filtered data
kpi_values = data[kpis].values[0]
kpi_names = kpis
num_cols = 1 # Number of columns to display KPIs
num_kpis = len(kpi_values)
# Calculate the number of rows needed based on the number of KPIs and columns
num_rows = (num_kpis + num_cols - 1) // num_cols
# Iterate over the rows to display KPIs in rows of 7
for i in range(num_rows):
cols = st.columns(num_cols)
for j in range(num_cols):
idx = i * num_cols + j
if idx < num_kpis:
cols[j].markdown(
f"""
<div style="
background-color: #0076b6;
border-radius: 10px;
padding: 5px;
margin: 5px;
height: 120px;
display: flex;
flex-direction: column;
justify-content: center;
align-items: center;
text-align: center;
">
<p style="margin: 0;">{kpi_names[idx]}</p> <!-- Add margin: 0; to remove default margin -->
<h3 style="margin: 0;">{kpi_values[idx]}</h3> <!-- Add margin: 0; to remove default margin -->
</div>
"""
, unsafe_allow_html=True)
def display_kpi_metrics4(selected_entity, selected_month, kpis, title, data):
# Filter data based on the selected entity and month
data = data[(data['entity'] == selected_entity) & (data['month_name'] == selected_month)]
# Get KPI values and names from the filtered data
kpi_values = data[kpis].values[0]
kpi_names = kpis
num_cols = 1 # Number of columns to display KPIs
num_kpis = len(kpi_values)
# Calculate the number of rows needed based on the number of KPIs and columns
num_rows = (num_kpis + num_cols - 1) // num_cols
# Iterate over the rows to display KPIs in rows of 7
for i in range(num_rows):
cols = st.columns(num_cols)
for j in range(num_cols):
idx = i * num_cols + j
if idx < num_kpis:
cols[j].markdown(
f"""
<div style="
background-color: #0076b6;
border-radius: 10px;
padding: 5px;
margin: 5px;
height: 265px;
display: flex;
flex-direction: column;
justify-content: center;
align-items: center;
text-align: center;
">
<p style="margin: 0;">{kpi_names[idx]}</p> <!-- Add margin: 0; to remove default margin -->
<h3 style="margin: 0;">{kpi_values[idx]}</h3> <!-- Add margin: 0; to remove default margin -->
</div>
"""
, unsafe_allow_html=True)
# SECTION 1 - KPIs
# Define 2 Columns
col1, col2 = st.columns([7, 3])
# Applying custom CSS to adjust column widths
st.markdown(
"""
<style>
.css-1ikpi7r {
width: 60%;
padding: 0px;
margin: 0px;
}
.css-o5mxxx {
width: 40%;
padding: 0px;
margin: 0px;
}
</style>
""",
unsafe_allow_html=True
)
# KPIs
with col1:
xdi_kpis = ['DXP', 'iGTa', 'iGTe', 'iGV', 'oGTa', 'oGTe', 'oGV']
display_kpi_metrics(selected_entity, selected_month, xdi_kpis, "XDI Scores",data)
"""
"""
# Display HDI Scores
hdi_kpis = ['BD', 'Brand', 'EM', 'ER', 'FnL', 'IM', 'TM']
display_kpi_metrics(selected_entity, selected_month, hdi_kpis, "HDI Scores",data)
"""
"""
with col2:
odi_kpis = ['XDI', 'HDI', 'ODI']
display_kpi_metrics2(selected_entity, selected_month, odi_kpis, "ODI Scores", data)
# SECTION 2
# Define the columns with specified widths
col1, col2, col3 = st.columns([8, 1, 1]) # 70%, 15%, 15%
# Applying custom CSS to adjust column widths
st.markdown(
"""
<style>
.css-1ikpi7r { /* CSS class for the first column */
width: 80%; /* Set width to 70% */
padding: 0px; /* Remove padding */
margin: 0px; /* Remove margin */
}
.css-o5mxxx { /* CSS class for the second and third columns */
width: 10%; /* Set width to 15% */
padding: 0px; /* Remove padding */
margin: 0px; /* Remove margin */
}
</style>
""",
unsafe_allow_html=True
)
# st.dataframe(data_rank)
# Bar chart Column
with col1:
# Generate bar chart
gen_bar_chart(selected_entity, selected_month, data)
# KPI Column1
with col2:
XDI_kpi = ['XDI Rank']
display_kpi_metrics3(selected_entity, selected_month,XDI_kpi, "XDI Rank", data_rank)
"""
"""
HDI_kpi = ['HDI Rank']
display_kpi_metrics3(selected_entity, selected_month, HDI_kpi, "HDI Rank", data_rank)
# KPI Column2
with col3:
ODI_kpi = ['ODI Rank']
display_kpi_metrics4(selected_entity, selected_month, ODI_kpi, "ODI Rank", data_rank)
# SECTION 3
# Create three columns for line charts
col1, col2, col3 = st.columns(3)
# Plot each chart in a separate column
with col1:
plot_score_line_chart(filtered_data_entity, 'XDI', xdi_col)
with col2:
plot_score_line_chart(filtered_data_entity, 'HDI', hdi_col)
with col3:
plot_score_line_chart(filtered_data_entity, 'ODI', odi_col)
#SECTION 4
# Create three columns for bar charts
col1, col2, col3 = st.columns(3)
# Plot each chart in a separate column
with col1:
plot_score_bar_chart(filtered_data2, 'XDI', xdi_col)
with col2:
plot_score_bar_chart(filtered_data2, 'HDI', hdi_col)
with col3:
plot_score_bar_chart(filtered_data2, 'ODI', odi_col)
#SECTION 5
# Display the DataFrame with functions in one column and selected entities
filtered_data2 = data[data['month_name'] == selected_month]
pivot_data = filtered_data2.set_index('entity').T.drop('month_name')
# Create three columns for line charts
col1, col2 = st.columns([6.5, 3.5])
# Plot each chart in a separate column
with col1:
st.markdown(
f"<h7 style='color: white;'>{f'Entity vs Functions Score Summary for {selected_month}'}</h7>",
unsafe_allow_html=True
)
st.dataframe(pivot_data, use_container_width=True)
with col2:
st.markdown(
f"<h7 style='color: white;'>{f'XDI - HDI - ODI Comparisions {selected_month}'}</h7>",
unsafe_allow_html=True
)
plot_bubble_chart(filtered_data2)
# Create three columns for bar charts
col1, col2 = st.columns(2)
st.subheader('Functional Analysis')
st.write("<br>", unsafe_allow_html=True)
selected_function = st.selectbox('Select Function', function_list)
# Display the relevant function data based on the selected function
function_data = pivot_data.loc[[selected_function]].reset_index(drop=True)
st.write("<br>", unsafe_allow_html=True)
st.dataframe(function_data, use_container_width=True, hide_index=True)
# Create three columns for line charts
col1, col2= st.columns(2)
# Plot each chart in a separate column
with col1:
plot_score_bar_chart(filtered_data2, selected_function, gen)
with col2:
plot_score_line_chart(filtered_data_entity, selected_function, gen)
# Create three columns for bar charts
col1, col2 = st.columns(2)
data_core_filtered = data_core[(data_core['Function'] == selected_function) & (data_core['month_name'] == selected_month)]
data_core_filtered = data_core_filtered.drop_duplicates()
columns_to_display = [col for col in data_core_filtered.columns if col not in ['month_name', 'Function']]
# Remove index column
data_core_filtered_display = data_core_filtered[columns_to_display].reset_index(drop=True)
st.dataframe(data_core_filtered_display, use_container_width=True)
st.subheader(f'Criteria Analysis of {selected_function} Function')
## Bar chart for Criteria
#drop down
criteria_list = data_core_filtered['Criteria'].unique()
selected_criteria = st.selectbox('Select Criteria', criteria_list)
st.write("<br><br>", unsafe_allow_html=True)
crieria_data = data_core_filtered[data_core_filtered['Criteria'] == selected_criteria]
cr_columns_to_display = [col for col in crieria_data.columns if col not in ['month_name', 'Function']]
crieria_data = crieria_data[cr_columns_to_display].reset_index(drop=True)
crieria_data = crieria_data.drop(columns=['Criteria'])
crieria_data = crieria_data.T.reset_index()
crieria_data.columns = ['Column', 'Value']
### Plot the bar chart
st.bar_chart(crieria_data.set_index('Column'))
filter_and_plot(selected_function, selected_criteria, selected_entity)
st.write("<br><br><br>", unsafe_allow_html=True)
#Footer
st.write("<p style='text-align: center;'>Made with ❤️ by </Dev.Team> of AIESEC in Sri Lanka</p>", unsafe_allow_html=True)