forked from smousavi05/STEAD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
unite_conversion.py
127 lines (110 loc) · 3.71 KB
/
unite_conversion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun May 10 22:35:07 2020
@author: mostafamousavi
"""
import obspy
import h5py
from obspy import UTCDateTime
import numpy as np
from obspy.clients.fdsn.client import Client
import matplotlib.pyplot as plt
def make_stream(dataset):
'''
input: hdf5 dataset
output: obspy stream
'''
data = np.array(dataset)
tr_E = obspy.Trace(data=data[:, 0])
tr_E.stats.starttime = UTCDateTime(dataset.attrs['trace_start_time'])
tr_E.stats.delta = 0.01
tr_E.stats.channel = dataset.attrs['receiver_type']+'E'
tr_E.stats.station = dataset.attrs['receiver_code']
tr_E.stats.network = dataset.attrs['network_code']
tr_N = obspy.Trace(data=data[:, 1])
tr_N.stats.starttime = UTCDateTime(dataset.attrs['trace_start_time'])
tr_N.stats.delta = 0.01
tr_N.stats.channel = dataset.attrs['receiver_type']+'N'
tr_N.stats.station = dataset.attrs['receiver_code']
tr_N.stats.network = dataset.attrs['network_code']
tr_Z = obspy.Trace(data=data[:, 2])
tr_Z.stats.starttime = UTCDateTime(dataset.attrs['trace_start_time'])
tr_Z.stats.delta = 0.01
tr_Z.stats.channel = dataset.attrs['receiver_type']+'Z'
tr_Z.stats.station = dataset.attrs['receiver_code']
tr_Z.stats.network = dataset.attrs['network_code']
stream = obspy.Stream([tr_E, tr_N, tr_Z])
return stream
# reading one sample trace from STEAD
file_name = "dataset6/waveforms_12_20_19.hdf5"
dtfl = h5py.File(file_name, 'r')
dataset = dtfl.get('earthquake/local/109C.TA_20061103161223_EV')
# convering hdf5 dataset into obspy sream
st = make_stream(dataset)
# ploting the verical component of the raw data
tr_Z = st[2]
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.plot(tr_Z.times("matplotlib"), tr_Z.data, "k-")
ax.xaxis_date()
fig.autofmt_xdate()
plt.ylabel('counts')
plt.title('Raw Data')
fig.tight_layout()
plt.show()
fig.savefig('1_raw.png')
# downloading the instrument response of the station from IRIS
client = Client("IRIS")
inventory = client.get_stations(network=dataset.attrs['network_code'],
station=dataset.attrs['receiver_code'],
starttime=UTCDateTime(dataset.attrs['trace_start_time']),
endtime=UTCDateTime(dataset.attrs['trace_start_time']) + 60,
loc="*",
channel="*",
level="response")
# exploring the downloaded response file
print(inventory)
inventory[0].plot_response(min_freq=1E-4)
# converting into displacement
st = make_stream(dataset)
st = st.remove_response(inventory=inventory, output="DISP", plot=False)
tr_Z = st[2]
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.plot(tr_Z.times("matplotlib"), tr_Z.data, "k-")
ax.xaxis_date()
fig.autofmt_xdate()
plt.ylabel('meters')
plt.title('Displacement')
fig.tight_layout()
plt.show()
fig.savefig('1_disp.png')
# converting into velocity
st = make_stream(dataset)
st = st.remove_response(inventory=inventory, output='VEL', plot=False)
tr_Z = st[2]
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.plot(tr_Z.times("matplotlib"), tr_Z.data, "k-")
ax.xaxis_date()
fig.autofmt_xdate()
plt.ylabel('meters/second')
plt.title('Velocity')
fig.tight_layout()
plt.show()
fig.savefig('1_vel.png')
# converting into acceleration
st = make_stream(dataset)
st.remove_response(inventory=inventory, output="ACC", plot=False)
tr_Z = st[2]
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.plot(tr_Z.times("matplotlib"), tr_Z.data, "k-")
ax.xaxis_date()
fig.autofmt_xdate()
plt.ylabel('meters/second**2')
plt.title('Acceleration')
fig.tight_layout()
plt.show()
fig.savefig('1_acc.png')