-
Notifications
You must be signed in to change notification settings - Fork 5
/
predict.py
522 lines (466 loc) · 23.2 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
import logging
import os
import time
from contextlib import nullcontext
from glob import glob
import eqnet
import matplotlib
import pandas as pd
import torch
import torch.multiprocessing as mp
import torch.utils.data
import utils
import wandb
from eqnet.data import DASIterableDataset, SeismicTraceIterableDataset
from eqnet.models.unet import moving_normalize
from eqnet.utils import (
detect_peaks,
extract_events,
extract_picks,
merge_events,
merge_patch,
merge_picks,
plot_das,
plot_phasenet,
plot_phasenet_plus,
)
from tqdm import tqdm
# mp.set_start_method("spawn", force=True)
matplotlib.use("agg")
logger = logging.getLogger()
def postprocess(meta, output, polarity_scale=1, event_scale=16):
nt, nx = meta["nt"], meta["nx"]
data = meta["data"][:, :, :nt, :nx]
# data = moving_normalize(data)
meta["data"] = data
if "phase" in output:
output["phase"] = output["phase"][:, :, :nt, :nx]
if "polarity" in output:
output["polarity"] = output["polarity"][:, :, : (nt - 1) // polarity_scale + 1, :nx]
if "event_center" in output:
output["event_center"] = output["event_center"][:, :, : (nt - 1) // event_scale + 1, :nx]
if "event_time" in output:
output["event_time"] = output["event_time"][:, :, : (nt - 1) // event_scale + 1, :nx]
return meta, output
def pred_phasenet(args, model, data_loader, pick_path, figure_path):
model.eval()
ctx = nullcontext() if args.device == "cpu" else torch.amp.autocast(device_type=args.device, dtype=args.ptdtype)
with torch.inference_mode():
for meta in tqdm(data_loader, desc="Predicting", total=len(data_loader)):
with ctx:
output = model(meta)
meta, output = postprocess(meta, output)
if "phase" in output:
phase_scores = torch.softmax(output["phase"], dim=1) # [batch, nch, nt, nsta]
topk_phase_scores, topk_phase_inds = detect_peaks(phase_scores, vmin=args.min_prob, kernel=128)
phase_picks_ = extract_picks(
topk_phase_inds,
topk_phase_scores,
file_name=meta["file_name"],
station_id=meta["station_id"],
begin_time=meta["begin_time"] if "begin_time" in meta else None,
begin_time_index=meta["begin_time_index"] if "begin_time_index" in meta else None,
dt=meta["dt_s"] if "dt_s" in meta else 0.01,
vmin=args.min_prob,
phases=args.phases,
waveform=meta["data"],
window_amp=[10, 5], # s
)
for i in range(len(meta["file_name"])):
tmp = meta["file_name"][i].split("/")
parent_dir = "/".join(tmp[-args.subdir_level - 1 : -1])
filename = tmp[-1].replace("*", "").replace("?", "").replace(".mseed", "")
if not os.path.exists(os.path.join(pick_path, parent_dir)):
os.makedirs(os.path.join(pick_path, parent_dir), exist_ok=True)
if len(phase_picks_[i]) == 0:
## keep an empty file for the file with no picks to make it easier to track processed files
with open(os.path.join(pick_path, parent_dir, filename + ".csv"), "a"):
pass
continue
picks_df = pd.DataFrame(phase_picks_[i])
picks_df.sort_values(by=["phase_time"], inplace=True)
picks_df.to_csv(os.path.join(pick_path, parent_dir, filename + ".csv"), index=False)
if args.plot_figure:
# meta["waveform_raw"] = meta["waveform"].clone()
# meta["data"] = moving_normalize(meta["data"])
plot_phasenet(
meta,
phase_scores.cpu(),
file_name=meta["file_name"],
dt=meta["dt_s"] if "dt_s" in meta else torch.tensor(0.01),
figure_dir=figure_path,
)
## merge picks
if args.distributed:
torch.distributed.barrier()
if utils.is_main_process():
merge_picks(pick_path)
else:
merge_picks(pick_path)
return 0
def pred_phasenet_plus(args, model, data_loader, pick_path, event_path, figure_path):
model.eval()
ctx = (
nullcontext()
if args.device in ["cpu", "mps"]
else torch.amp.autocast(device_type=args.device, dtype=args.ptdtype)
)
with torch.inference_mode():
for meta in tqdm(data_loader, desc="Predicting", total=len(data_loader)):
with ctx:
output = model(meta)
meta, output = postprocess(meta, output)
dt = meta["dt_s"] if "dt_s" in meta else [torch.tensor(0.01)] * len(meta["data"])
if "phase" in output:
phase_scores = torch.softmax(output["phase"], dim=1) # [batch, nch, nt, nsta]
if "polarity" in output:
# polarity_scores = torch.sigmoid(output["polarity"])
polarity_scores = torch.softmax(output["polarity"], dim=1)
topk_phase_scores, topk_phase_inds = detect_peaks(
phase_scores, vmin=args.min_prob, kernel=128, dt=dt.min().item()
)
phase_picks = extract_picks(
topk_phase_inds,
topk_phase_scores,
file_name=meta["file_name"],
station_id=meta["station_id"],
begin_time=meta["begin_time"] if "begin_time" in meta else None,
begin_time_index=meta["begin_time_index"] if "begin_time_index" in meta else None,
dt=dt,
vmin=args.min_prob,
phases=args.phases,
polarity_score=polarity_scores,
waveform=meta["data"],
)
if ("event_center" in output) and (output["event_center"] is not None):
event_center = torch.sigmoid(output["event_center"])
event_time = output["event_time"]
topk_event_scores, topk_event_inds = detect_peaks(
event_center, vmin=args.min_prob, kernel=16, dt=dt.min().item() * 16.0
)
event_detects = extract_events(
topk_event_inds,
topk_event_scores,
file_name=meta["file_name"],
station_id=meta["station_id"],
begin_time=meta["begin_time"] if "begin_time" in meta else None,
begin_time_index=meta["begin_time_index"] if "begin_time_index" in meta else None,
dt=dt,
vmin=args.min_prob,
event_time=event_time,
waveform=meta["data"],
)
for i in range(len(meta["file_name"])):
tmp = meta["file_name"][i].split("/")
parent_dir = "/".join(tmp[-args.subdir_level - 1 : -1])
filename = tmp[-1].replace("*", "").replace("?", "").replace(".mseed", "")
if not os.path.exists(os.path.join(pick_path, parent_dir)):
os.makedirs(os.path.join(pick_path, parent_dir), exist_ok=True)
if len(phase_picks[i]) == 0:
## keep an empty file for the file with no picks to make it easier to track processed files
with open(os.path.join(pick_path, parent_dir, filename + ".csv"), "a"):
pass
continue
picks_df = pd.DataFrame(phase_picks[i])
picks_df.sort_values(by=["phase_time"], inplace=True)
picks_df.to_csv(os.path.join(pick_path, parent_dir, filename + ".csv"), index=False)
if ("event_center" in output) and ("event_time" in output):
if not os.path.exists(os.path.join(event_path, parent_dir)):
os.makedirs(os.path.join(event_path, parent_dir), exist_ok=True)
if len(event_detects[i]) == 0:
with open(os.path.join(event_path, parent_dir, filename + ".csv"), "a"):
pass
continue
events_df = pd.DataFrame(event_detects[i])
events_df.sort_values(by=["event_time"], inplace=True)
events_df.to_csv(os.path.join(event_path, parent_dir, filename + ".csv"), index=False)
if args.plot_figure:
plot_phasenet_plus(
meta,
phase_scores.cpu().float(),
polarity_scores.cpu().float() if polarity_scores is not None else None,
event_center.cpu().float() if "event_center" in output else None,
event_time.cpu().float() if "event_time" in output else None,
phase_picks=phase_picks,
event_detects=event_detects,
file_name=meta["file_name"],
dt=dt,
figure_dir=figure_path,
)
## merge picks
if args.distributed:
torch.distributed.barrier()
if utils.is_main_process():
merge_picks(pick_path)
merge_events(event_path)
else:
merge_picks(pick_path)
merge_events(event_path)
return 0
def pred_phasenet_das(args, model, data_loader, pick_path, figure_path):
model.eval()
ctx = nullcontext() if args.device == "cpu" else torch.amp.autocast(device_type=args.device, dtype=args.ptdtype)
with torch.inference_mode():
# for meta in metric_logger.log_every(data_loader, 1, header):
for meta in tqdm(data_loader, desc="Predicting", total=len(data_loader)):
with ctx:
output = model(meta)
meta, output = postprocess(meta, output)
scores = torch.softmax(output["phase"], dim=1) # [batch, nch, nt, nsta]
topk_scores, topk_inds = detect_peaks(scores, vmin=args.min_prob, kernel=21)
picks_ = extract_picks(
topk_inds,
topk_scores,
file_name=meta["file_name"],
begin_time=meta["begin_time"] if "begin_time" in meta else None,
begin_time_index=meta["begin_time_index"] if "begin_time_index" in meta else None,
begin_channel_index=meta["begin_channel_index"] if "begin_channel_index" in meta else None,
dt=meta["dt_s"] if "dt_s" in meta else 0.01,
vmin=args.min_prob,
phases=args.phases,
)
for i in range(len(meta["file_name"])):
tmp = meta["file_name"][i].split("/")
parent_dir = "/".join(tmp[-args.subdir_level - 1 : -1])
filename = tmp[-1].replace("*", "").replace(f".{args.format}", "")
if not os.path.exists(os.path.join(pick_path, parent_dir)):
os.makedirs(os.path.join(pick_path, parent_dir), exist_ok=True)
if len(picks_[i]) == 0:
## keep an empty file for the file with no picks to make it easier to track processed files
with open(os.path.join(pick_path, parent_dir, filename + ".csv"), "a"):
pass
continue
picks_df = pd.DataFrame(picks_[i])
picks_df["channel_index"] = picks_df["station_id"].apply(lambda x: int(x))
picks_df.sort_values(by=["channel_index", "phase_index"], inplace=True)
picks_df.to_csv(
os.path.join(pick_path, parent_dir, filename + ".csv"),
columns=["channel_index", "phase_index", "phase_time", "phase_score", "phase_type"],
index=False,
)
if args.plot_figure:
plot_das(
meta["data"].cpu().float(),
scores.cpu().float(),
picks=picks_,
phases=args.phases,
file_name=meta["file_name"],
begin_time_index=meta["begin_time_index"] if "begin_time_index" in meta else None,
begin_channel_index=meta["begin_channel_index"] if "begin_channel_index" in meta else None,
dt=meta["dt_s"] if "dt_s" in meta else torch.tensor(0.01),
dx=meta["dx_m"] if "dx_m" in meta else torch.tensor(10.0),
figure_dir=figure_path,
)
if args.distributed:
torch.distributed.barrier()
if args.cut_patch and utils.is_main_process():
merge_patch(pick_path, pick_path.rstrip("_patch"), return_single_file=False)
else:
if args.cut_patch:
merge_patch(pick_path, pick_path.rstrip("_patch"), return_single_file=False)
return 0
def main(args):
result_path = args.result_path
if args.cut_patch:
pick_path = os.path.join(result_path, f"picks_{args.model}_patch")
event_path = os.path.join(result_path, f"events_{args.model}_patch")
figure_path = os.path.join(result_path, f"figures_{args.model}_patch")
else:
pick_path = os.path.join(result_path, f"picks_{args.model}")
event_path = os.path.join(result_path, f"events_{args.model}")
figure_path = os.path.join(result_path, f"figures_{args.model}")
if not os.path.exists(result_path):
utils.mkdir(result_path)
if not os.path.exists(pick_path):
utils.mkdir(pick_path)
if not os.path.exists(event_path):
utils.mkdir(event_path)
if not os.path.exists(figure_path):
utils.mkdir(figure_path)
utils.init_distributed_mode(args)
print(args)
if args.distributed:
rank = utils.get_rank()
world_size = utils.get_world_size()
else:
if "RANK" in os.environ and "WORLD_SIZE" in os.environ:
rank = int(os.environ["RANK"])
world_size = int(os.environ["WORLD_SIZE"])
else:
rank = 0
world_size = 1
device = torch.device(args.device)
dtype = "bfloat16" if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else "float16"
ptdtype = {"float32": torch.float32, "bfloat16": torch.bfloat16, "float16": torch.float16}[dtype]
args.dtype, args.ptdtype = dtype, ptdtype
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
if args.use_deterministic_algorithms:
torch.backends.cudnn.benchmark = False
torch.use_deterministic_algorithms(True)
else:
torch.backends.cudnn.benchmark = True
if args.model in ["phasenet", "phasenet_plus"]:
dataset = SeismicTraceIterableDataset(
data_path=args.data_path,
data_list=args.data_list,
hdf5_file=args.hdf5_file,
prefix=args.prefix,
format=args.format,
dataset=args.dataset,
training=False,
sampling_rate=args.sampling_rate,
highpass_filter=args.highpass_filter,
response_path=args.response_path,
response_xml=args.response_xml,
cut_patch=args.cut_patch,
resample_time=args.resample_time,
system=args.system,
nx=args.nx,
nt=args.nt,
rank=rank,
world_size=world_size,
)
sampler = None
elif args.model == "phasenet_das":
dataset = DASIterableDataset(
data_path=args.data_path,
data_list=args.data_list,
format=args.format,
nx=args.nx,
nt=args.nt,
training=False,
system=args.system,
cut_patch=args.cut_patch,
highpass_filter=args.highpass_filter,
resample_time=args.resample_time,
resample_space=args.resample_space,
skip_existing=args.skip_existing,
pick_path=pick_path,
subdir_level=args.subdir_level,
rank=rank,
world_size=world_size,
)
sampler = None
else:
raise ("Unknown model")
data_loader = torch.utils.data.DataLoader(
dataset,
batch_size=args.batch_size,
sampler=sampler,
num_workers=min(args.workers, mp.cpu_count()),
collate_fn=None,
drop_last=False,
)
model = eqnet.models.__dict__[args.model].build_model(
backbone=args.backbone,
in_channels=1,
out_channels=(len(args.phases) + 1),
)
logger.info("Model:\n{}".format(model))
model.to(device)
if args.distributed:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
if args.resume:
checkpoint = torch.load(args.resume, map_location="cpu")
# model.load_state_dict(checkpoint["model"], strict=True)
# print("Loaded checkpoint '{}' (epoch {})".format(args.resume, checkpoint["epoch"]))
else:
if args.model == "phasenet":
if args.location is None:
model_url = "https://github.com/AI4EPS/models/releases/download/PhaseNet-v1/model_99.pth"
elif args.model == "phasenet_plus":
if args.location is None:
model_url = "https://github.com/AI4EPS/models/releases/download/PhaseNet-Plus-v1/model_99.pth"
elif args.location == "LCSN":
model_url = "https://github.com/AI4EPS/models/releases/download/PhaseNet-Plus-LCSN/model_99.pth"
elif args.model == "phasenet_das":
if args.location is None:
# model_url = "https://github.com/AI4EPS/models/releases/download/PhaseNet-DAS-v0/PhaseNet-DAS-v0.pth"
model_url = "https://github.com/AI4EPS/models/releases/download/PhaseNet-DAS-v1/PhaseNet-DAS-v1.pth"
elif args.location == "forge":
model_url = (
"https://github.com/AI4EPS/models/releases/download/PhaseNet-DAS-ConvertedPhase/model_99.pth"
)
else:
raise ("Missing pretrained model for this location")
else:
raise
checkpoint = torch.hub.load_state_dict_from_url(
model_url, model_dir=f"./model_{args.model}", progress=True, check_hash=True, map_location="cpu"
)
## load model from wandb
# if utils.is_main_process():
# with wandb.init() as run:
# artifact = run.use_artifact(model_url, type="model")
# artifact_dir = artifact.download()
# checkpoint = torch.load(glob(os.path.join(artifact_dir, "*.pth"))[0], map_location="cpu")
# model.load_state_dict(checkpoint["model"], strict=True)
model_without_ddp = model
if args.distributed:
torch.distributed.barrier()
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
model_without_ddp.load_state_dict(checkpoint["model"], strict=True)
if args.model == "phasenet":
pred_phasenet(args, model, data_loader, pick_path, figure_path)
if args.model == "phasenet_plus":
pred_phasenet_plus(args, model, data_loader, pick_path, event_path, figure_path)
if args.model == "phasenet_das":
pred_phasenet_das(args, model, data_loader, pick_path, figure_path)
def get_args_parser(add_help=True):
import argparse
parser = argparse.ArgumentParser(description="EQNet Model", add_help=add_help)
# model
parser.add_argument("--model", default="phasenet_das", type=str, help="model name")
parser.add_argument("--resume", default="", type=str, help="path of checkpoint")
parser.add_argument("--backbone", default="unet", type=str, help="model backbone")
parser.add_argument("--phases", default=["P", "S"], type=str, nargs="+", help="phases to use")
parser.add_argument("--device", default="cuda", type=str, help="device (Use cuda or cpu Default: cuda)")
parser.add_argument(
"-j", "--workers", default=0, type=int, metavar="N", help="number of data loading workers (default: 16)"
)
parser.add_argument(
"-b", "--batch_size", default=1, type=int, help="images per gpu, the total batch size is $NGPU x batch_size"
)
# Mixed precision training parameters
parser.add_argument(
"--use_deterministic_algorithms", action="store_true", help="Forces the use of deterministic algorithms only."
)
parser.add_argument("--amp", action="store_true", help="Use torch.cuda.amp for mixed precision training")
# distributed training parameters
parser.add_argument("--world-size", default=1, type=int, help="number of distributed processes")
parser.add_argument("--dist-url", default="env://", type=str, help="url used to set up distributed training")
# prediction parameters
parser.add_argument("--data_path", type=str, default="./", help="path to data directory")
parser.add_argument("--data_list", type=str, default=None, help="selectecd data list")
parser.add_argument("--hdf5-file", default=None, type=str, help="hdf5 file for training")
parser.add_argument("--prefix", default="", type=str, help="prefix for the file name")
parser.add_argument("--format", type=str, default="h5", help="data format")
parser.add_argument("--dataset", type=str, default="das", help="dataset type; seismic_trace, seismic_network, das")
parser.add_argument("--result_path", type=str, default="results", help="path to result directory")
parser.add_argument("--plot_figure", action="store_true", help="If plot figure for test")
parser.add_argument("--min_prob", default=0.3, type=float, help="minimum probability for picking")
## Seismic
parser.add_argument("--add_polarity", action="store_true", help="If use polarity information")
parser.add_argument("--add_event", action="store_true", help="If use event information")
parser.add_argument("--sampling_rate", type=float, default=100.0, help="sampling rate; default 100.0 Hz")
parser.add_argument("--highpass_filter", type=float, default=0.0, help="highpass filter; default 0.0 is no filter")
parser.add_argument("--response_path", default=None, type=str, help="response path")
parser.add_argument("--response_xml", default=None, type=str, help="response xml file")
parser.add_argument("--subdir_level", default=0, type=int, help="folder depth for data list")
## DAS
parser.add_argument("--cut_patch", action="store_true", help="If cut patch for continuous data")
parser.add_argument("--nt", default=1024 * 20, type=int, help="number of time samples for each patch")
parser.add_argument("--nx", default=1024 * 5, type=int, help="number of spatial samples for each patch")
parser.add_argument("--resample_time", action="store_true", help="If resample time for continuous data")
parser.add_argument("--resample_space", action="store_true", help="If resample space for continuous data")
parser.add_argument(
"--system", type=str, default=None, help="The name of system of different system: optasense, eqnet, or None"
)
parser.add_argument("--location", type=str, default=None, help="The name of systems at location")
parser.add_argument("--skip_existing", action="store_true", help="Skip existing files")
return parser
if __name__ == "__main__":
args = get_args_parser().parse_args()
main(args)