forked from google-research/google-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformers_test.py
130 lines (115 loc) · 4.15 KB
/
transformers_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# coding=utf-8
# Copyright 2022 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from axial import transformers
from axial import utils
import numpy as np
import tensorflow.compat.v1 as tf
class Transformer2dTest(tf.test.TestCase):
SEED = 31241
# These are bad hyperparams to exaggerate differences due to sampling bugs
MODEL_PARAMS = dict(
num_embs=256,
emb_dim=8,
num_heads=2,
hdim_factor=4,
res_init_scale=1.0,
emb_init_scale=1.0,
logits_init_scale=1.0,
num_outer_layers=2,
num_inner_layers=2)
def setUp(self):
super(Transformer2dTest, self).setUp()
tf.set_random_seed(self.SEED)
np.random.seed(self.SEED)
def _run_sampling_test(self, model, x_shape, cond_data):
x_sym = tf.placeholder(tf.int32, x_shape)
# sampling noise
noise_sym = tf.placeholder(tf.float32, list(x_sym.shape) + [model.num_embs])
# conditioning info
cond = tf.constant(cond_data, dtype=tf.float32)
# model graph
logits_sym = model.compute_logits(x_sym, cond=cond, dropout=0.1)
del logits_sym
samples_slow_sym = model.sample_slow(
noise=noise_sym, cond=cond, dropout=0.0)
samples_sym = model.sample_fast(noise=noise_sym, cond=cond, dropout=0.0)
samples_badcond_sym = model.sample_fast(
noise=noise_sym, cond=None, dropout=0.0)
for v in tf.trainable_variables():
print(v.name)
noise = utils.np_gumbel(
np.random.RandomState(self.SEED),
shape=noise_sym.shape,
temperature=1.0)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print('sampling..')
samples_a = sess.run(samples_slow_sym, {noise_sym: noise}).squeeze()
samples_b = sess.run(samples_sym, {noise_sym: noise}).squeeze()
samples_c = sess.run(samples_badcond_sym, {noise_sym: noise}).squeeze()
print(samples_a)
print(samples_b)
self.assertAllClose(
samples_a, samples_b, msg='fast/slow sampling do not agree')
self.assertNotAllClose(
samples_a, samples_c, msg='samples do not depend on conditioning')
print('ok!')
def test_transformer2d_sampling(self):
"""Unit test for fast and slow sampling."""
bs = 3
img_shape = [4, 5]
model = transformers.Transformer2d(
name='model',
img_height=img_shape[0],
img_width=img_shape[1],
**self.MODEL_PARAMS)
self._run_sampling_test(
model,
x_shape=[bs] + img_shape,
cond_data=np.random.randn(*([bs] + img_shape + [model.emb_dim])))
def test_multichannel_transformer2d_sampling(self):
"""Unit test for fast and slow sampling."""
bs = 3
img_shape = [4, 5, 7]
model = transformers.MultiChannelTransformer2d(
name='model',
img_height=img_shape[0],
img_width=img_shape[1],
img_channels=img_shape[2],
**self.MODEL_PARAMS)
self._run_sampling_test(
model,
x_shape=[bs] + img_shape,
cond_data=np.random.randn(*([bs] + img_shape[:2] + [model.emb_dim])))
def test_transformer3d_sampling(self):
"""Unit test for fast and slow sampling."""
bs = 3
img_shape = [4, 5, 7]
model = transformers.Transformer3d(
name='model',
img_height=img_shape[0],
img_width=img_shape[1],
img_channels=img_shape[2],
num_exterior_layers=2,
**self.MODEL_PARAMS)
self._run_sampling_test(
model,
x_shape=[bs] + img_shape,
cond_data=np.random.randn(*([bs] + img_shape[:2] + [model.emb_dim])))
if __name__ == '__main__':
tf.test.main()