forked from google-research/google-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig_imagenet32.py
53 lines (49 loc) · 1.72 KB
/
config_imagenet32.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# coding=utf-8
# Copyright 2022 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v1 as tf
def get_config():
return tf.contrib.training.HParams(**{
'total_bs': 64,
'eval_total_bs': 16,
'dataset_name': 'imagenet32',
'dataset_config': tf.contrib.training.HParams(),
'model_name': 'SlicedChannelModel',
'model_config': tf.contrib.training.HParams(**{
'optim': tf.contrib.training.HParams(**{
'max_lr': 1e-4,
'warmup': 5000,
'grad_clip_norm': 1.0,
'ema': 0.99995,
'optimizer': 'adam',
'adam_beta1': 0.9,
'adam_beta2': 0.999,
}),
'dropout': 0.04,
'img_size': 32,
'ardec': tf.contrib.training.HParams(**{
'emb_dim': 1536,
'hdim_factor': 1,
'emb_init_scale': 5.0,
'num_heads': 16,
'num_exterior_layers': 8,
'num_outer_layers': 8,
'num_inner_layers': 8,
'res_init_scale': 1e-10,
}),
})
})