diff --git a/ginjinn/predictor/predictors.py b/ginjinn/predictor/predictors.py index fdeacb1..f5e18ab 100644 --- a/ginjinn/predictor/predictors.py +++ b/ginjinn/predictor/predictors.py @@ -253,12 +253,12 @@ def predict( if "COCO" in output_options: self._update_coco( - "annotations", image, img_name, i_img + 1, boxes, classes, masks + "annotations", image, img_name, i_img + 1, boxes, scores, classes, masks ) if "cropped" in output_options: self._save_cropped( - image, img_name, i_img + 1, boxes, classes, masks, padding + image, img_name, i_img + 1, boxes, scores, classes, masks, padding ) if "visualization" in output_options: @@ -312,6 +312,7 @@ def _save_cropped( img_name: str, img_id: int, boxes: np.ndarray, + scores: np.ndarray, classes: List[str], masks: Optional[np.ndarray] = None, padding: int = 5, @@ -360,6 +361,7 @@ def _save_cropped( "img_{}_{}.jpg".format(img_id, i_inst + 1), len(self._coco_images["annotations_cropped"]) + 1, np.expand_dims(box, axis=0), + np.expand_dims(scores[i_inst], axis=0), np.expand_dims(classes[i_inst], axis=0), np.expand_dims(mask_cropped, axis=0), ) @@ -371,6 +373,7 @@ def _update_coco( img_name: str, img_id: int, boxes: np.ndarray, + scores: np.ndarray, classes: List[str], masks: Optional[np.ndarray] = None, ): @@ -397,6 +400,7 @@ def _update_coco( anno = { "area": (bbox[2] - bbox[0]) * (bbox[3] - bbox[1]), "bbox": bbox_coco, + "score": scores[i_inst], "iscrowd": 0, "image_id": img_id, "id": len(self._coco_annotations[name]) + 1,