-
Notifications
You must be signed in to change notification settings - Fork 107
/
Copy pathcommonsense_evaluate.py
300 lines (257 loc) · 9.04 KB
/
commonsense_evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import copy
import json
import os
import re
import sys
import argparse
import fire
import torch
sys.path.append(os.path.join(os.getcwd(), "peft/src/"))
from peft import PeftModel
from tqdm import tqdm
from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer, AutoModelForCausalLM, AutoTokenizer
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
try:
if torch.backends.mps.is_available():
device = "mps"
except: # noqa: E722
pass
def main(
load_8bit: bool = False,
base_model: str = "",
lora_weights: str = "tloen/alpaca-lora-7b",
share_gradio: bool = False,
):
args = parse_args()
def evaluate(
instructions,
input=None,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
max_new_tokens=32,
**kwargs,
):
prompts = [generate_prompt(instruction, input) for instruction in instructions]
inputs = tokenizer(prompts, return_tensors="pt", padding=True)
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,
)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
)
s = generation_output.sequences
outputs = tokenizer.batch_decode(s, skip_special_tokens=True)
outputs = [o.split("### Response:")[1].strip() for o in outputs]
print(outputs)
return outputs
save_file = f'experiment/{args.model}-{args.adapter}-{args.dataset}.json'
create_dir('experiment/')
dataset = load_data(args)
batches = create_batch(dataset, args.batch_size)
tokenizer, model = load_model(args)
total = len(batches)
correct = 0
current = 0
output_data = []
pbar = tqdm(total=total)
for idx, batch in enumerate(batches):
current += len(batch)
instructions = [data.get('instruction') for data in batch]
outputs = evaluate(instructions)
for data, output in zip(batch, outputs):
label = data.get('answer')
flag = False
predict = extract_answer(args, output)
if label == predict:
correct += 1
flag = True
new_data = copy.deepcopy(data)
new_data['output_pred'] = output
new_data['pred'] = predict
new_data['flag'] = flag
output_data.append(new_data)
print(data["instruction"])
print(output)
print('prediction:', predict)
print('label:', label)
print('---------------')
print(f'\rtest:{idx + 1}/{total} | accuracy {correct} {correct / current}')
print('---------------')
with open(save_file, 'w+') as f:
json.dump(output_data, f, indent=4)
pbar.update(1)
pbar.close()
print('\n')
print('test finished')
def create_dir(dir_path):
if not os.path.exists(dir_path):
os.mkdir(dir_path)
return
def generate_prompt(instruction, input=None):
if input:
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Input:
{input}
### Response:
""" # noqa: E501
else:
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:
""" # noqa: E501
def load_data(args) -> list:
"""
read data from dataset file
Args:
args:
Returns:
"""
file_path = f'dataset/{args.dataset}/test.json'
if not os.path.exists(file_path):
raise FileNotFoundError(f"can not find dataset file : {file_path}")
json_data = json.load(open(file_path, 'r'))
return json_data
def create_batch(dataset, batch_size):
batches = []
num_batch = len(dataset)//batch_size if len(dataset) % batch_size == 0 else len(dataset)//batch_size + 1
for i in range(num_batch):
batch = dataset[i*batch_size: min((i+1)*batch_size, len(dataset))]
batches.append(batch)
return batches
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', choices=["boolq", "piqa", "social_i_qa", "hellaswag", "winogrande", "ARC-Challenge", "ARC-Easy", "openbookqa"],
required=True)
parser.add_argument('--model', choices=['LLaMA-7B', "LLaMA-13B",'BLOOM-7B', 'GPT-j-6B'], required=True)
parser.add_argument('--adapter', choices=['LoRA', 'AdapterP', 'AdapterH', 'Parallel'],
required=True)
parser.add_argument('--base_model', required=True)
parser.add_argument('--lora_weights', required=True)
parser.add_argument('--batch_size', type=int, required=True)
parser.add_argument('--load_8bit', action='store_true', default=False)
return parser.parse_args()
def load_model(args) -> tuple:
"""
load tuned model
Args:
args:
Returns:
tuple(tokenizer, model)
"""
base_model = args.base_model
if not base_model:
raise ValueError(f'can not find base model name by the value: {args.model}')
lora_weights = args.lora_weights
if not lora_weights:
raise ValueError(f'can not find lora weight, the value is: {lora_weights}')
load_8bit = args.load_8bit
if "LLaMA" in args.model:
tokenizer = LlamaTokenizer.from_pretrained(base_model)
else:
tokenizer = AutoTokenizer.from_pretrained(base_model)
tokenizer.padding_side = "left"
tokenizer.pad_token_id = (
0 # unk. we want this to be different from the eos token
)
if device == "cuda":
model = AutoModelForCausalLM.from_pretrained(
base_model,
load_in_8bit=load_8bit,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
) # fix zwq
model = PeftModel.from_pretrained(
model,
lora_weights,
torch_dtype=torch.float16,
device_map={"":0}
)
elif device == "mps":
model = AutoModelForCausalLM.from_pretrained(
base_model,
device_map={"": device},
torch_dtype=torch.float16,
)
model = PeftModel.from_pretrained(
model,
lora_weights,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
model = AutoModelForCausalLM.from_pretrained(
base_model, device_map={"": device}, low_cpu_mem_usage=True
)
model = PeftModel.from_pretrained(
model,
lora_weights,
device_map={"": device},
)
# unwind broken decapoda-research config
model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk
model.config.bos_token_id = 1
model.config.eos_token_id = 2
if not load_8bit:
model.half() # seems to fix bugs for some users.
model.eval()
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
return tokenizer, model
def load_instruction(args) -> str:
instruction = ''
if not instruction:
raise ValueError('instruct not initialized')
return instruction
def extract_answer(args, sentence: str) -> float:
dataset = args.dataset
if dataset == 'boolq':
sentence_ = sentence.strip()
pred_answers = re.findall(r'true|false', sentence_)
if not pred_answers:
return ""
return pred_answers[0]
elif dataset == 'piqa':
sentence_ = sentence.strip()
pred_answers = re.findall(r'solution1|solution2', sentence_)
if not pred_answers:
return ""
return pred_answers[0]
elif dataset in ['social_i_qa', 'ARC-Challenge', 'ARC-Easy', 'openbookqa']:
sentence_ = sentence.strip()
pred_answers = re.findall(r'answer1|answer2|answer3|answer4|answer5', sentence_)
if not pred_answers:
return ""
return pred_answers[0]
elif dataset == 'hellaswag':
sentence_ = sentence.strip()
pred_answers = re.findall(r'ending1|ending2|ending3|ending4', sentence_)
if not pred_answers:
return ""
return pred_answers[0]
elif dataset == 'winogrande':
sentence_ = sentence.strip()
pred_answers = re.findall(r'option1|option2', sentence_)
if not pred_answers:
return ""
return pred_answers[0]
if __name__ == "__main__":
main()