-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpoint_generator.py
228 lines (192 loc) · 7.72 KB
/
point_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# --------------------------------------------------------
# point_generator.py
#
# This script generates and manipulates the arrays of
# points to be looped over using various methods
# (e.g. enveleope, bisection) and fed into sdpb
# --------------------------------------------------------
import numpy as np
from printing_tools import *
mainpath = os.path.dirname(__file__)
scratchpath = os.path.join(mainpath, "scratch")
# --------------------------------------------------------
# Makes a numpy array from a to b with a given resolution
# --------------------------------------------------------
def mkrange(a, b, resolution):
if resolution == 1:
return np.array([0.5*(a+b)])
else:
return np.linspace(a, b, num=resolution)
# --------------------------------------------------------
# Converts an array of 3D point values, interpretted as
# tuples: (\Delta_\sigma, \Delta_\epsilon, \theta)
# into a dict of the base tuples
# (\Delta_\sigma, \Delta_\epsilon) as keys
# and the theta values as vals
# --------------------------------------------------------
def array2dict3D(points):
assert len(points) > 0 and len(points[0]) == 3
base_points = dict()
# Build the dictionary:
for point in points:
base_point = (point[0], point[1])
theta = point[2]
entry = base_points.get(base_point)
if entry is None:
base_points[base_point] = [theta]
else:
base_points[base_point].append(theta)
# Sort the dictionary
for thetas in base_points.values():
thetas.sort()
return base_points
# --------------------------------------------------------
# Converts an array of 2D point values, interpretted as
# tuples: (\Delta_\sigma, \Delta_\epsilon)
# into a dict of the sigma values as keys
# and the epsilon values as vals
# --------------------------------------------------------
def array2dict2D(points):
assert len(points) > 0 and len(points[0]) == 2
base_points = dict()
# Build the dictionary:
for point in points:
base_point = (point[0], )
eps = point[1]
entry = base_points.get(base_point)
if entry is None:
base_points[base_point] = [eps]
else:
base_points[base_point].append(eps)
# Sort the dictionary
for epsilons in base_points.values():
epsilons.sort()
return base_points
# --------------------------------------------------------
# Given an in_file, prints the params to an out_file
# (or STDOUT by default), and returns the list of points
# contained in that file
# --------------------------------------------------------
def generate_from_file(params=None, f_in=None, f_out=None):
if f_out is not None and f_in is not None:
print_out("Using {}".format(params), f_out=f_out)
print_out("from file {}".format(f_in.name), f_out=f_out)
number_data = re.compile("-?[\d]+.[\d]*")
points = []
# The following gives the list of points contained in the file
for line in f_in:
data = number_data.findall(line)
if data:
points.append(map(lambda x: float(x), data))
return points
# --------------------------------------------------------
# If f_in is specified, generates the points from that
# in_file
#
# Otherwise, uses params to construct the correct array
# of points
# --------------------------------------------------------
def generate_points(params, f_in=None, f_out=None):
# Usually we will just read in from a file (can effectively ignore things below this)
if f_in is not None:
return generate_from_file(params, f_in=f_in, f_out=f_out)
# Otherwise I will assume we are looking to resolve information near the 3D Ising CFT point
Dsig = 0.518154
Deps = 1.41267
distance = (0.002, 0.02)
theta0 = 0.969260330903202
# Or some other origin/distance specified by the user
if params['origin'] and not params['range']:
Dsig, Deps = params['origin']
if params['dist'] and not params['range']:
dist = float(params['dist'])
distance = (dist, 10 * dist)
sig_min = Dsig - distance[0]
sig_max = Dsig + distance[0]
eps_min = Deps - distance[1]
eps_max = Deps + distance[1]
if params['range']:
sig_min, sig_max, eps_min, eps_max = params['range']
sig_res, eps_res = params['res']
use_theta = False
if params['theta_range']:
use_theta = True
theta_min, theta_max = params['theta_range']
elif params['theta_dist']:
use_theta = True
theta_min = theta0 - params['theta_dist']
theta_max = theta0 + params['theta_dist']
theta_res = params['theta_res']
print_out("Using {}".format(params), f_out=f_out)
print_out("with resolutions = ({}, {}), ".format(sig_res, eps_res) \
+ "Delta window = (({}, {}), ({}, {})), ".format(
sig_min, sig_max, eps_min, eps_max), f_out=f_out)
if use_theta:
print_out("use_theta window = ({}, {}), with resolution {}".format(
theta_min, theta_max, theta_res), f_out=f_out)
sigmas = mkrange(sig_min, sig_max, sig_res)
epsilons = mkrange(eps_min, eps_max, eps_res)
points = []
if use_theta:
thetas = mkrange(theta_min, theta_max, theta_res)
for sigma in sigmas:
for epsilon in epsilons:
if use_theta:
for theta in thetas:
points.append([sigma, epsilon, theta])
else:
points.append([sigma, epsilon])
write_update(f_out)
return points
# --------------------------------------------------------
# Generates a set of points, either from params or an
# in_file, to and prints these to an out_file
# corresponding to the name of the job
#
# If multiple batches are specified, this divides the
# points into equal batches to be written to separate
# files, one for each job that will be called, and
# labelled in the form:
#
# <name>_<batch #>of<total batches>.pts
#
# --------------------------------------------------------
def generate_to_file(params, batches=1, f_in=None):
points = generate_points(params, f_in=f_in)
name = params['name']
assert len(points) > 0
assert len(points[0]) == 2 or len(points[0]) == 3
# In the case of an envelope method this bundles the submit files by
# Base point in the plane, so that the full fiber is accessible for a given job
if params['envelope']:
if len(points[0]) == 2:
base_points = array2dict2D(points)
elif len(points[0]) == 3:
base_points = array2dict3D(points)
num_points = len(base_points.keys())
batch = 0
point_num = 0
f_new = open("scratch/{}_{}of{}.pts".format(name, batch + 1, batches), 'w')
for base_point, fiber in base_points.iteritems():
if point_num > num_points/batches and batch+1 != batches:
batch += 1
point_num = 1
f_new.close()
f_new = open("scratch/{}_{}of{}.pts".format(name, batch + 1, batches), 'w')
for value in fiber:
if len(points[0]) == 2:
f_new.write("({}, {})\n".format(base_point[0], value))
elif len(points[0]) == 3:
f_new.write("({}, {}, {})\n".format(base_point[0], base_point[1], value))
point_num += 1
# In the case of a 2D scan over scaling dimensions, we break down
# the batches equally.
else:
num_points = len(points)
for batch in range(batches):
f_new = open("scratch/{}_{}of{}.pts".format(name, batch + 1, batches), 'w')
begin = (batch * num_points)/batches
end = ((batch + 1) * num_points)/batches
for point in points[begin:end]:
f_new.write("{}\n".format(point))
f_new.close()