-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
228 lines (198 loc) · 7.46 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import torch
from src.chroma.layers.linalg import eig_leading
from src.chroma.layers.structure import geometry
import numpy as np
import os
import json
from copy import deepcopy
import mrcfile
from scipy.ndimage import zoom
from Bio import PDB
alphabet = ['<cls>', '<pad>', '<eos>', '<unk>', 'L', 'A', 'G', 'V', 'S', 'E', 'R', 'T', 'I', 'D', 'P', 'K', 'Q', 'N', 'F', 'Y', 'M', 'H', 'W', 'C', 'X', 'B', 'U', 'Z', 'O', '.', '-', '<null_1>', '<mask>']
AA_map = {
"ALA": "A",
"CYS": "C",
"ASP": "D",
"GLU": "E",
"PHE": "F",
"GLY": "G",
"HIS": "H",
"ILE": "I",
"LYS": "K",
"LEU": "L",
"MET": "M",
"ASN": "N",
"PRO": "P",
"GLN": "Q",
"ARG": "R",
"SER": "S",
"THR": "T",
"VAL": "V",
"TRP": "W",
"TYR": "Y"
}
DNA_map = {
'DA' : 'A',
'DG' : 'G',
'DC' : 'C',
'DT' : 'T'
}
RNA_map = {
'A' : 'A',
'G' : 'G',
'C' : 'C',
'U' : 'U'
}
parser = PDB.PDBParser()
def resize_3d_data(data, target_shape):
zoom_factors = (
target_shape[0] / data.shape[0],
target_shape[1] / data.shape[1],
target_shape[2] / data.shape[2]
)
resized_data = zoom(data, zoom_factors, order=3)
return resized_data
def get_data(dir_path):
protein_data, seq, chain_index = None, None, None
for file in os.listdir(dir_path):
if file.endswith('.mrc'):
dm_path = os.path.join(dir_path, file)
try:
p_map = mrcfile.open(dm_path, mode='r')
protein_data = deepcopy(p_map.data)
protein_data = resize_3d_data(protein_data, [360, 360, 360])
except Exception as e:
print(f"Error loading or processing the density map: {e}")
raise
elif file.endswith('.json'):
seq_chain_path = os.path.join(dir_path, file)
try:
with open(seq_chain_path, 'r') as f:
seq_chain = json.load(f)
seq, chain_index = seq_chain['seq'], seq_chain['chain_index']
seq = np.array([alphabet.index(item) for item in seq])
chain_index = np.array(chain_index)
except Exception as e:
print(f"Error loading or processing the seq/chain: {e}")
raise
if protein_data is None:
raise FileNotFoundError("No .mrc file found in the specified directory or failed to load.")
if seq is None or chain_index is None:
raise FileNotFoundError("No valid .json file found in the specified directory or failed to load.")
return protein_data, seq, chain_index
def get_coord_from_pdb(pdb_path):
if not os.path.exists(pdb_path):
print(f"Error: PDB file '{pdb_path}' does not exist.")
return None
parser = PDB.PDBParser(QUIET=True)
try:
structure = parser.get_structure("", pdb_path)
except Exception as e:
print(f"Error parsing PDB file '{pdb_path}': {e}")
return None
coords = []
for model in structure:
for chain in model:
for residue in chain:
coord = np.zeros((4, 3), dtype=np.float32)
for i, atom in enumerate(residue):
if i >= 4:
break
coord[i] = atom.coord
coords.append(coord)
if not coords:
print("Warning: No atomic coordinates were extracted.")
return None
return np.array(coords, dtype=np.float32)
def eigen(F):
method = 'power'
# Compute optimal quaternion by extracting leading eigenvector
if method == "symeig":
L, V = torch.linalg.eigh(F)
top_eig = L[:, 3]
vec = V[:, :, 3]
elif method == "power":
top_eig, vec = eig_leading(F, num_iterations=50)
else:
raise NotImplementedError
return top_eig, vec
def align(
X_mobile,
X_target,
mask=None,
_eps = 1e-5
):
"""Compute optimal RMSDs between each corresponding batch members.
https://math.unm.edu/~vageli/papers/rmsd.pdf
Args:
X_mobile (Tensor): Mobile coordinates with shape
`(..., num_atoms, 3)`.
X_target (Tensor): Target coordinates with shape
`(..., num_atoms, 3)`.
mask (Tensor, optional): Binary mask tensor for missing atoms with
shape `(..., num_atoms)`.
compute_alignment (boolean, optional): If True, also return the
superposed coordinates.
Returns:
RMSD (Tensors): Optimal RMSDs after superposition for all pairs of
input structures with shape `(...)`.
X_mobile_transform (Tensor, optional): Superposed coordinates with
shape `(..., num_atoms, 3)`. Requires
`compute_alignment` = True`.
"""
R_to_F = np.zeros((9, 16)).astype("f")
F_nonzero = [
[(0,0,1.),(1,1,1.),(2,2,1.)], [(1,2,1.),(2,1,-1.)], [(2,0,1.),(0,2,-1.)], [(0,1,1.),(1,0,-1.)],
[(1,2,1.),(2,1,-1.)], [(0,0,1.),(1,1,-1.),(2,2,-1.)], [(0,1,1.),(1,0,1.)], [(0,2,1.),(2,0,1.)],
[(2,0,1.),(0,2,-1.)], [(0,1,1.),(1,0,1.)], [(0,0,-1.),(1,1,1.),(2,2,-1.)], [(1,2,1.),(2,1,1.)],
[(0,1,1.),(1,0,-1.)], [(0,2,1.),(2,0,1.)], [(1,2,1.),(2,1,1.)], [(0,0,-1.),(1,1,-1.),(2,2,1.)]
]
# fmt: on
for F_ij, nonzero in enumerate(F_nonzero):
for R_i, R_j, sign in nonzero:
R_to_F[R_i * 3 + R_j, F_ij] = sign
R_to_F = torch.from_numpy(R_to_F)
# Collapse all leading batch dimensions
num_atoms = X_mobile.size(-2)
batch_dims = list(X_mobile.shape)[:-2]
X_mobile = X_mobile.reshape([-1, num_atoms, 3])
X_target = X_target.reshape([-1, num_atoms, 3])
num_batch = X_mobile.size(0)
if mask is not None:
mask = mask.reshape([-1, num_atoms])
# Center coordinates
if mask is None:
X_mobile_mean = X_mobile.mean(dim=1, keepdim=True)
X_target_mean = X_target.mean(dim=1, keepdim=True)
else:
mask_expand = mask.unsqueeze(-1)
X_mobile_mean = torch.sum(mask_expand * X_mobile, 1, keepdim=True) / (
torch.sum(mask_expand, 1, keepdim=True) + _eps
)
X_target_mean = torch.sum(mask_expand * X_target, 1, keepdim=True) / (
torch.sum(mask_expand, 1, keepdim=True) + _eps
)
X_mobile_center = X_mobile - X_mobile_mean
X_target_center = X_target - X_target_mean
if mask is not None:
X_mobile_center = mask_expand * X_mobile_center
X_target_center = mask_expand * X_target_center
# Cross-covariance matrices contract over atoms
R = torch.einsum("sai,saj->sij", [X_mobile_center, X_target_center])
# F Matrix has leading eigenvector as optimal quaternion
R_flat = R.reshape(num_batch, 9)
R_to_F = R_to_F.type(R_flat.dtype).to(X_mobile.device)
F = torch.matmul(R_flat, R_to_F).reshape(num_batch, 4, 4)
top_eig, vec = eigen(F + 1e-5 * torch.randn_like(F))
# Compute RMSD using top eigenvalue
norms = (X_mobile_center ** 2).sum(dim=[-1, -2]) + (X_target_center ** 2).sum(
dim=[-1, -2]
)
sqRMSD = torch.relu((norms - 2 * top_eig) / (num_atoms + _eps))
RMSD = torch.sqrt(sqRMSD).mean().item()
R = geometry.rotations_from_quaternions(vec, normalize=False)
X_mobile_transform = torch.einsum("bxr,bir->bix", R, X_mobile_center)
X_mobile_transform = X_mobile_transform + X_target_mean
if mask is not None:
X_mobile_transform = mask_expand * X_mobile_transform
return X_mobile_transform, RMSD