-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathconcat_layer.py
160 lines (127 loc) · 6.2 KB
/
concat_layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
"""Tests the methods in concat_layer.py
"""
import numpy as np
import torch
from external.bazel_python.pytest_helper import main
from pysyrenn.frontend.strided_window_data import StridedWindowData
from pysyrenn.frontend.fullyconnected_layer import FullyConnectedLayer
from pysyrenn.frontend.normalize_layer import NormalizeLayer
from pysyrenn.frontend.conv2d_layer import Conv2DLayer
from pysyrenn.frontend.averagepool_layer import AveragePoolLayer
from pysyrenn.frontend.concat_layer import ConcatLayer, ConcatAlong
import syrenn_proto.syrenn_pb2 as transformer_pb
def test_compute_flat():
"""Tests that the Concat layer correctly computes.
Uses concat_along = FLAT
"""
batch = 15
n_inputs = 1025
fullyconnected_outputs = 2046
inputs = np.random.uniform(size=(batch, n_inputs)).astype(np.float32)
weights = np.random.uniform(size=(n_inputs, fullyconnected_outputs))
weights = weights.astype(np.float32)
biases = np.random.uniform(size=(fullyconnected_outputs))
biases = biases.astype(np.float32)
true_fullyconnected_outputs = np.matmul(inputs, weights) + biases
means = np.random.uniform(size=(n_inputs)).astype(np.float32)
stds = np.random.uniform(size=(n_inputs)).astype(np.float32)
true_normalize_outputs = (inputs - means) / stds
true_outputs = np.concatenate([true_fullyconnected_outputs,
true_normalize_outputs],
axis=1)
fullyconnected_layer = FullyConnectedLayer(weights, biases)
normalize_layer = NormalizeLayer(means, stds)
concat_layer = ConcatLayer([fullyconnected_layer, normalize_layer],
ConcatAlong.FLAT)
assert np.allclose(concat_layer.compute(inputs), true_outputs)
torch_inputs = torch.FloatTensor(inputs)
torch_outputs = concat_layer.compute(torch_inputs).numpy()
assert np.allclose(torch_outputs, true_outputs)
def test_compute_channels():
"""Tests that the Concat layer correctly computes.
Uses concat_along = CHANNELS
"""
batch = 15
height, width, channels = (32, 32, 3)
out_channels = 6
inputs = np.random.uniform(size=(batch, height*width*channels))
inputs = inputs.astype(np.float32)
filters = np.random.uniform(size=(2, 2, channels, out_channels))
filters = filters.astype(np.float32)
biases = np.random.uniform(size=(out_channels)).astype(np.float32)
conv_window_data = StridedWindowData((height, width, channels),
(2, 2), (2, 2), (0, 0), out_channels)
conv2d_layer = Conv2DLayer(conv_window_data, filters, biases)
conv2d_outputs = conv2d_layer.compute(inputs)
pool_window_data = StridedWindowData((height, width, channels),
(2, 2), (2, 2), (0, 0), channels)
averagepool_layer = AveragePoolLayer(pool_window_data)
pool_outputs = averagepool_layer.compute(inputs)
true_outputs = np.concatenate([conv2d_outputs.reshape((-1, out_channels)),
pool_outputs.reshape((-1, channels))],
axis=1).reshape((batch, -1))
concat_layer = ConcatLayer([conv2d_layer, averagepool_layer],
ConcatAlong.CHANNELS)
assert np.allclose(concat_layer.compute(inputs), true_outputs)
torch_inputs = torch.FloatTensor(inputs)
torch_outputs = concat_layer.compute(torch_inputs).numpy()
assert np.allclose(torch_outputs, true_outputs)
def test_compute_invalid():
"""Tests that the Concat layer fails on an invalid concat_along.
"""
batch = 15
n_inputs = 1025
fullyconnected_outputs = 2046
inputs = np.random.uniform(size=(batch, n_inputs)).astype(np.float32)
weights = np.random.uniform(size=(n_inputs, fullyconnected_outputs))
weights = weights.astype(np.float32)
biases = np.random.uniform(size=(fullyconnected_outputs))
biases = biases.astype(np.float32)
fullyconnected_layer = FullyConnectedLayer(weights, biases)
means = np.random.uniform(size=(n_inputs)).astype(np.float32)
stds = np.random.uniform(size=(n_inputs)).astype(np.float32)
normalize_layer = NormalizeLayer(means, stds)
concat_layer = ConcatLayer([fullyconnected_layer, normalize_layer], None)
try:
concat_layer.compute(inputs)
assert False
except NotImplementedError:
assert True
def test_serialize():
"""Tests that the Concat layer correctly serializes itself.
"""
n_inputs = 125
fullyconnected_outputs = 246
weights = np.random.uniform(size=(n_inputs, fullyconnected_outputs))
biases = np.random.uniform(size=(fullyconnected_outputs))
fullyconnected_layer = FullyConnectedLayer(weights, biases)
means = np.random.uniform(size=(n_inputs)).astype(np.float32)
stds = np.random.uniform(size=(n_inputs)).astype(np.float32)
normalize_layer = NormalizeLayer(means, stds)
concat_layer = ConcatLayer([fullyconnected_layer, normalize_layer],
ConcatAlong.FLAT)
serialized = concat_layer.serialize()
assert serialized.WhichOneof("layer_data") == "concat_data"
assert (serialized.concat_data.concat_along ==
transformer_pb.ConcatLayerData.ConcatAlong.Value(
"CONCAT_ALONG_FLAT"))
assert len(serialized.concat_data.layers) == 2
assert serialized.concat_data.layers[0] == fullyconnected_layer.serialize()
assert serialized.concat_data.layers[1] == normalize_layer.serialize()
# TODO: This does not check that deserialized.input_layers was done
# correctly, but that should be the case as long as their deserialize
# methods work (tested in their respective files).
deserialized = ConcatLayer.deserialize(serialized)
assert deserialized.concat_along == ConcatAlong.FLAT
serialized.relu_data.SetInParent()
deserialized = ConcatLayer.deserialize(serialized)
assert deserialized is None
concat_layer.concat_along = ConcatAlong.CHANNELS
deserialized = ConcatLayer.deserialize(concat_layer.serialize())
assert deserialized.concat_along == ConcatAlong.CHANNELS
try:
ConcatAlong.deserialize(5)
assert False, "Should have errored on unrecognized serialization."
except NotImplementedError:
pass
main(__name__, __file__)