-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
331 lines (268 loc) · 13 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
import datetime
import os
import traceback
import numpy as np
import torch
import yaml
from torch import nn
from torch.utils.data import DataLoader
from torchvision import transforms
from tqdm.autonotebook import tqdm
from backbone import EfficientDetBackbone
from efficientdet.dataset import Resizer, Normalizer, collater
from efficientdet.loss import FocalLoss
from utils.sync_batchnorm import patch_replication_callback
from utils.utils import replace_w_sync_bn, CustomDataParallel, get_last_weights, init_weights
from dataprocessor import DatawAnnotation, NoiseAdder
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
project = 'numbers'
class Params:
def __init__(self, project_file):
self.params = yaml.safe_load(open(project_file).read())
def __getattr__(self, item):
return self.params.get(item, None)
class ModelWithLoss(nn.Module):
def __init__(self, model, debug=False):
super().__init__()
self.criterion = FocalLoss()
self.model = model
self.debug = debug
def forward(self, imgs, annotations, obj_list=None):
_, regression, classification, anchors = self.model(imgs)
if self.debug:
cls_loss, reg_loss = self.criterion(classification, regression,
anchors, annotations,
imgs=imgs, obj_list=obj_list)
else:
cls_loss, reg_loss = self.criterion(classification, regression,
anchors, annotations)
return cls_loss, reg_loss
def train(project):
params = Params(f'{project}.yml')
if params.num_gpus == 0:
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
if torch.cuda.is_available():
torch.cuda.manual_seed(42)
else:
torch.manual_seed(42)
params.saved_path = params.saved_path + f'/{params.project_name}/'
params.log_path = params.log_path + f'/{params.project_name}/tensorboard/'
os.makedirs(params.log_path, exist_ok=True)
os.makedirs(params.saved_path, exist_ok=True)
training_params = {'batch_size': params.batch_size,
'shuffle': True,
'drop_last': True,
'collate_fn': collater,
'num_workers': params.num_workers}
val_params = {'batch_size': params.batch_size,
'shuffle': False,
'drop_last': True,
'collate_fn': collater,
'num_workers': params.num_workers}
input_sizes = [512, 640, 768, 896, 1024, 1280, 1280, 1536, 1536]
if params.custom_size:
img_size = params.custom_size
else:
img_size = input_sizes[params.compound_coef]
training_set = DatawAnnotation(root_dir='train/',
anno_dir='annotation_train.csv',
transform=transforms.Compose([
Normalizer(mean=params.mean, std=params.std),
NoiseAdder(),
Resizer(img_size)
]))
training_generator = DataLoader(training_set, **training_params)
val_set = DatawAnnotation(root_dir='val/',
anno_dir='annotation_val.csv',
transform=transforms.Compose([
Normalizer(mean=params.mean, std=params.std),
Resizer(img_size)
]))
val_generator = DataLoader(val_set, **val_params)
model = EfficientDetBackbone(num_classes=len(params.obj_list),
compound_coef=params.compound_coef,
ratios=eval(params.anchors_ratios),
scales=eval(params.anchors_scales))
# load last weights
if params.load_weights is not None:
if params.load_weights.endswith('.pth'):
weights_path = params.load_weights
else:
weights_path = get_last_weights(params.saved_path)
try:
last_step = int(os.path.basename(weights_path).split('_')[-1].split('.')[0])
except:
last_step = 0
try:
ret = model.load_state_dict(torch.load(weights_path), strict=False)
except RuntimeError as e:
print(f'[Warning] Ignoring {e}')
print(
'[Warning] Don\'t panic if you see this, this might be because '
+ 'you load a pretrained weights with different number of classes. '
+ 'The rest of the weights should be loaded already.')
print(f'[Info] loaded weights: {os.path.basename(weights_path)},'
+ 'resuming checkpoint from step: {last_step}')
else:
last_step = 0
print('[Info] initializing weights...')
init_weights(model)
# freeze backbone if train head_only
if params.head_only:
def freeze_backbone(m):
classname = m.__class__.__name__
for ntl in ['EfficientNet', 'BiFPN']:
if ntl in classname:
for param in m.parameters():
param.requires_grad = False
model.apply(freeze_backbone)
print('[Info] freezed backbone')
# https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
# apply sync_bn when using multiple gpu and batch_size per gpu
# is lower than 4, useful when gpu memory is limited.
# because when bn is disable, the training will be very unstable
# or slow to converge, apply sync_bn can solve it,
# by packing all mini-batch across all gpus as one batch and normalize,
# then send it back to all gpus.
# but it would also slow down the training by a little bit.
if params.num_gpus > 1 and params.batch_size // params.num_gpus < 4:
model.apply(replace_w_sync_bn)
use_sync_bn = True
else:
use_sync_bn = False
# warp the model with loss function, to reduce the memory usage and speedup
model = ModelWithLoss(model, debug=params.debug)
if params.num_gpus > 0:
model = model.cuda()
if params.num_gpus > 1:
model = CustomDataParallel(model, params.num_gpus)
if use_sync_bn:
patch_replication_callback(model)
if params.optim == 'adamw':
optimizer = torch.optim.AdamW(model.parameters(), params.lr)
else:
optimizer = torch.optim.SGD(model.parameters(), params.lr, momentum=0.9,
nesterov=True)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=3,
verbose=True)
epoch = 0
best_loss = 1e5
best_epoch = 0
step = max(0, last_step)
model.train()
num_iter_per_epoch = len(training_generator)
with open('log.txt', 'a+') as f:
f.write(datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))
try:
for epoch in range(params.num_epochs):
total_closs = 0
total_rloss = 0
last_epoch = step // num_iter_per_epoch
if epoch < last_epoch:
continue
epoch_loss = []
progress_bar = tqdm(training_generator)
for iter, data in enumerate(progress_bar):
if iter < step - last_epoch * num_iter_per_epoch:
progress_bar.update()
continue
try:
imgs = data['img']
annot = data['annot']
if params.num_gpus == 1:
# if only one gpu, just send it to cuda:0
# elif multiple gpus, send it to multiple gpus in
# CustomDataParallel, not here
imgs = imgs.cuda()
annot = annot.cuda()
optimizer.zero_grad()
cls_loss, reg_loss = model(imgs, annot,
obj_list=params.obj_list)
cls_loss = cls_loss.mean()
reg_loss = reg_loss.mean()
loss = cls_loss + reg_loss
total_closs += cls_loss
total_rloss += reg_loss
if loss == 0 or not torch.isfinite(loss):
continue
loss.backward()
# torch.nn.utils.clip_grad_norm_(model.parameters(), 0.1)
optimizer.step()
epoch_loss.append(float(loss))
progress_bar.set_description(
'Step: {}. Epoch: {}/{}. Iteration: {}/{}. Cls loss: {:.5f}. Reg loss: {:.5f}. Total loss: {:.5f}'.format(
step, epoch, params.num_epochs, iter + 1,
num_iter_per_epoch, cls_loss.item(),
reg_loss.item(), loss.item()))
# log learning_rate
current_lr = optimizer.param_groups[0]['lr']
step += 1
if step % params.save_interval == 0 and step > 0:
save_checkpoint(model,
f'efficientdet-d{params.compound_coef}_{epoch}_{step}.pth',
params.saved_path)
print('checkpoint...')
except Exception as e:
print('[Error]', traceback.format_exc())
print(e)
continue
scheduler.step(np.mean(epoch_loss))
with open('log.txt', 'a+') as f:
f.write(
'Train. Epoch: {}/{}. Classification loss: {:1.5f}. Regression loss: {:1.5f}. Total loss: {:1.5f}'.format(
epoch, params.num_epochs, total_closs, total_rloss,
total_closs + total_rloss))
# Validation
if epoch % params.val_interval == 0:
model.eval()
loss_regression_ls = []
loss_classification_ls = []
for iter, data in enumerate(val_generator):
with torch.no_grad():
imgs = data['img']
annot = data['annot']
if params.num_gpus == 1:
imgs = imgs.cuda()
annot = annot.cuda()
cls_loss, reg_loss = model(imgs, annot,
obj_list=params.obj_list)
cls_loss = cls_loss.mean()
reg_loss = reg_loss.mean()
loss = cls_loss + reg_loss
if loss == 0 or not torch.isfinite(loss):
continue
loss_classification_ls.append(cls_loss.item())
loss_regression_ls.append(reg_loss.item())
cls_loss = np.mean(loss_classification_ls)
reg_loss = np.mean(loss_regression_ls)
loss = cls_loss + reg_loss
print(
'Val. Epoch: {}/{}. Classification loss: {:1.5f}. Regression loss: {:1.5f}. Total loss: {:1.5f}'.format(
epoch, params.num_epochs, cls_loss, reg_loss, loss))
with open('log.txt', 'a+') as f:
f.write(
'Val. Epoch: {}/{}. Classification loss: {:1.5f}. Regression loss: {:1.5f}. Total loss: {:1.5f}'.format(
epoch, params.num_epochs, total_closs, total_rloss,
total_closs + total_rloss))
if loss + params.es_min_delta < best_loss:
best_loss = loss
best_epoch = epoch
save_checkpoint(model,
f'efficientdet-d{params.compound_coef}_{epoch}_{step}.pth',
params.saved_path)
model.train()
# Early stopping
if epoch - best_epoch > params.es_patience > 0:
print('[Info] Stop training at epoch {}. The lowest loss achieved is {}'.format(epoch, best_loss))
break
except KeyboardInterrupt:
save_checkpoint(model,
f'efficientdet-d{params.compound_coef}_{epoch}_{step}.pth',
params.saved_path)
def save_checkpoint(model, name, save_path):
if isinstance(model, CustomDataParallel):
torch.save(model.module.model.state_dict(), os.path.join(save_path, name))
else:
torch.save(model.model.state_dict(), os.path.join(save_path, name))
if __name__ == '__main__':
train(project)