forked from jvdsn/crypto-attacks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathboneh_durfee.py
49 lines (42 loc) · 2.02 KB
/
boneh_durfee.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import logging
from sage.all import RealNumber
from sage.all import ZZ
from sage.all import Zmod
from small_roots.herrmann_may import modular_bivariate
def attack(n, e, bitsize, lsb_known=0, lsb=0, delta=0.25, m_start=1):
"""
Recovers the prime factors if the private exponent is too small.
More information: Boneh D., Durfee G., "Cryptanalysis of RSA with Private Key d Less than N^0.292"
This implementation exploits knowledge of least significant bits of prime factors, if available.
:param n: the modulus
:param e: the public exponent
:param bitsize: the amount of bits of the prime factors
:param lsb_known: the amount of known least significant bits of one of the prime factors
:param lsb: the known least significant bits of one of the prime factors
:param delta: a predicted bound on the private exponent (d < n^delta) (default: 0.25)
:param m_start: the m value to start at for the Herrmann-May small roots method (default: 1)
:return: a tuple containing the prime factors
"""
x, y = Zmod(e)["x, y"].gens()
# Use additional information about factors to speed up Boneh-Durfee
p_lsb = lsb
q_lsb = (pow(lsb, -1, 2 ** lsb_known) * (n % 2 ** lsb_known)) % (2 ** lsb_known)
a = ((n >> lsb_known) + pow(2, -lsb_known, e) * (p_lsb * q_lsb - p_lsb - q_lsb + 1))
f = x * (a + y) + pow(2, -lsb_known, e)
xbound = int(e ** RealNumber(delta))
ybound = int(2 ** (bitsize - lsb_known + 1))
m = m_start
while True:
t = int(m * (1 - 2 * delta))
logging.debug(f"Trying m = {m}, t = {t}...")
for xroot, yroot in modular_bivariate(f, e, m, t, xbound, ybound):
z = xroot * (a + yroot) + pow(2, -lsb_known, e)
if z % e == 0:
s = (n + 1 + pow(xroot, -1, e)) % e
p = ZZ["p"].gen()
f = p ** 2 - s * p + n
for proot, _ in f.roots():
proot = int(proot)
if n % proot == 0:
return proot, n // proot
m += 1