-
Notifications
You must be signed in to change notification settings - Fork 9
/
pose_val.py
249 lines (197 loc) · 7.61 KB
/
pose_val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import time
import os
import math
import argparse
from glob import glob
from collections import OrderedDict
import random
import warnings
from datetime import datetime
import json
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
import pandas as pd
import joblib
import cv2
import yaml
from sklearn.model_selection import KFold, StratifiedKFold, train_test_split
from skimage.io import imread
from apex import amp
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.utils.data import DataLoader
from torch.utils.data.sampler import WeightedRandomSampler
import torch.backends.cudnn as cudnn
import torchvision
from albumentations.augmentations import transforms
from albumentations.core.composition import Compose, OneOf, KeypointParams
from albumentations.pytorch.transforms import ToTensor
from albumentations.core.transforms_interface import NoOp
from lib.datasets import PoseDataset
from lib.utils.utils import *
from lib.models.model_factory import get_pose_model
from lib.optimizers import RAdam
from lib import losses
from lib.decodes import decode
from lib.utils.vis import visualize
from lib.utils.nms import nms
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--det_name', default=None)
parser.add_argument('--pose_name', default=None)
parser.add_argument('--score_th', default=0.1, type=float)
parser.add_argument('--nms', default=True, type=str2bool)
parser.add_argument('--nms_th', default=0.1, type=float)
parser.add_argument('--show', action='store_true')
args = parser.parse_args()
return args
def main():
args = parse_args()
with open('models/pose/%s/config.yml' % args.pose_name, 'r') as f:
config = yaml.load(f, Loader=yaml.FullLoader)
print('-'*20)
for key in config.keys():
print('%s: %s' % (key, str(config[key])))
print('-'*20)
cudnn.benchmark = True
df = pd.read_csv('inputs/train.csv')
img_ids = df['ImageId'].values
img_paths = np.array('inputs/train_images/' + df['ImageId'].values + '.jpg')
mask_paths = np.array('inputs/train_masks/' + df['ImageId'].values + '.jpg')
labels = np.array([convert_str_to_labels(s) for s in df['PredictionString']])
with open('outputs/decoded/val/%s.json' %args.det_name, 'r') as f:
dets = json.load(f)
if config['rot'] == 'eular':
num_outputs = 3
elif config['rot'] == 'trig':
num_outputs = 6
elif config['rot'] == 'quat':
num_outputs = 4
else:
raise NotImplementedError
test_transform = Compose([
transforms.Resize(config['input_w'], config['input_h']),
transforms.Normalize(),
ToTensor(),
])
det_df = {
'ImageId': [],
'img_path': [],
'det': [],
'mask': [],
}
name = '%s_%.2f' %(args.det_name, args.score_th)
if args.nms:
name += '_nms%.2f' %args.nms_th
output_dir = 'processed/pose_images/val/%s' % name
os.makedirs(output_dir, exist_ok=True)
df = []
kf = KFold(n_splits=config['n_splits'], shuffle=True, random_state=41)
for fold, (train_idx, val_idx) in enumerate(kf.split(img_paths)):
print('Fold [%d/%d]' %(fold + 1, config['n_splits']))
# create model
model = get_pose_model(config['arch'],
num_outputs=num_outputs,
freeze_bn=config['freeze_bn'])
model = model.cuda()
model_path = 'models/pose/%s/model_%d.pth' % (config['name'], fold+1)
if not os.path.exists(model_path):
print('%s is not exists.' %model_path)
continue
model.load_state_dict(torch.load(model_path))
model.eval()
val_img_ids = img_ids[val_idx]
val_img_paths = img_paths[val_idx]
fold_det_df = {
'ImageId': [],
'img_path': [],
'det': [],
'mask': [],
}
for img_id, img_path in tqdm(zip(val_img_ids, val_img_paths), total=len(val_img_ids)):
img = cv2.imread(img_path)
height, width = img.shape[:2]
det = np.array(dets[img_id])
det = det[det[:, 6] > args.score_th]
if args.nms:
det = nms(det, dist_th=args.nms_th)
for k in range(len(det)):
pitch, yaw, roll, x, y, z, score, w, h = det[k]
fold_det_df['ImageId'].append(img_id)
fold_det_df['det'].append(det[k])
output_path = '%s_%d.jpg' %(img_id, k)
fold_det_df['img_path'].append(output_path)
x, y = convert_3d_to_2d(x, y, z)
w *= 1.1
h *= 1.1
xmin = int(round(x - w / 2))
xmax = int(round(x + w / 2))
ymin = int(round(y - h / 2))
ymax = int(round(y + h / 2))
cropped_img = img[ymin:ymax, xmin:xmax]
if cropped_img.shape[0] > 0 and cropped_img.shape[1] > 0:
cv2.imwrite(os.path.join(output_dir, output_path), cropped_img)
fold_det_df['mask'].append(1)
else:
fold_det_df['mask'].append(0)
fold_det_df = pd.DataFrame(fold_det_df)
test_set = PoseDataset(
output_dir + '/' + fold_det_df['img_path'].values,
fold_det_df['det'].values,
transform=test_transform,
masks=fold_det_df['mask'].values)
test_loader = torch.utils.data.DataLoader(
test_set,
batch_size=config['batch_size'],
shuffle=False,
num_workers=config['num_workers'],
# pin_memory=True,
)
fold_dets = []
with torch.no_grad():
for input, batch_det, mask in tqdm(test_loader, total=len(test_loader)):
input = input.cuda()
batch_det = batch_det.numpy()
mask = mask.numpy()
output = model(input)
output = output.cpu()
if config['rot'] == 'trig':
yaw = torch.atan2(output[..., 1:2], output[..., 0:1])
pitch = torch.atan2(output[..., 3:4], output[..., 2:3])
roll = torch.atan2(output[..., 5:6], output[..., 4:5])
roll = rotate(roll, -np.pi)
pitch = pitch.cpu().numpy()[:, 0]
yaw = yaw.cpu().numpy()[:, 0]
roll = roll.cpu().numpy()[:, 0]
batch_det[mask, 0] = pitch[mask]
batch_det[mask, 1] = yaw[mask]
batch_det[mask, 2] = roll[mask]
fold_dets.append(batch_det)
fold_dets = np.vstack(fold_dets)
fold_det_df['det'] = fold_dets.tolist()
fold_det_df = fold_det_df.groupby('ImageId')['det'].apply(list)
fold_det_df = pd.DataFrame({
'ImageId': fold_det_df.index.values,
'PredictionString': fold_det_df.values,
})
df.append(fold_det_df)
break
df = pd.concat(df).reset_index(drop=True)
for i in tqdm(range(len(df))):
img_id = df.loc[i, 'ImageId']
det = np.array(df.loc[i, 'PredictionString'])
if args.show:
img = cv2.imread('inputs/train_images/%s.jpg' %img_id)
img_pred = visualize(img, det)
plt.imshow(img_pred[..., ::-1])
plt.show()
df.loc[i, 'PredictionString'] = convert_labels_to_str(det[:, :7])
name += '_%s' %args.pose_name
df.to_csv('outputs/submissions/val/%s.csv' %name, index=False)
if __name__ == '__main__':
main()