-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmodel.py
273 lines (232 loc) · 9.96 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# -*- coding: utf-8 -*-
import os
seed_value = int(os.getenv('RANDOM_SEED', -1))
if seed_value != -1:
import random
random.seed(seed_value)
import numpy as np
np.random.seed(seed_value)
import tensorflow as tf
tf.set_random_seed(seed_value)
from langml import keras, K, L
from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split
from langml.plm.bert import load_bert
from langml.layers import SelfAttention
from bert4keras.optimizers import Adam, extend_with_weight_decay, extend_with_piecewise_linear_lr
def search_layer(inputs, name, exclude_from=None):
if exclude_from is None:
exclude_from = set()
if isinstance(inputs, keras.layers.Layer):
layer = inputs
else:
layer = inputs._keras_history[0]
if layer.name == name:
return layer
elif layer in exclude_from:
return None
else:
exclude_from.add(layer)
if isinstance(layer, keras.models.Model):
model = layer
for layer in model.layers:
if layer.name == name:
return layer
inbound_layers = layer._inbound_nodes[0].inbound_layers
if not isinstance(inbound_layers, list):
inbound_layers = [inbound_layers]
if len(inbound_layers) > 0:
for layer in inbound_layers:
layer = search_layer(layer, name, exclude_from)
if layer is not None:
return layer
def fgm(model, embedding_name, epsilon=1):
# modified from: https://github.com/bojone/bert4keras/blob/master/examples/task_iflytek_adversarial_training.py
if model.train_function is None:
model._make_train_function()
old_train_function = model.train_function
for output in model.outputs:
embedding_layer = search_layer(output, embedding_name)
if embedding_layer is not None:
break
if embedding_layer is None:
raise Exception('Embedding layer not found')
embeddings = embedding_layer.embeddings
gradients = K.gradients(model.total_loss, [embeddings])
gradients = K.zeros_like(embeddings) + gradients[0]
inputs = (
model._feed_inputs + model._feed_targets + model._feed_sample_weights
)
embedding_gradients = K.function(
inputs=inputs,
outputs=[gradients],
name='embedding_gradients',
)
def train_function(inputs):
grads = embedding_gradients(inputs)[0]
delta = epsilon * grads / (np.sqrt((grads**2).sum()) + 1e-8)
K.set_value(embeddings, K.eval(embeddings) + delta)
outputs = old_train_function(inputs)
K.set_value(embeddings, K.eval(embeddings) - delta)
return outputs
model.train_function = train_function
class Sampling(L.Layer):
"""Uses (z_mean, z_log_var) to sample z, the vector encoding a digit."""
def call(self, inputs):
z_mean, z_log_var = inputs
batch = K.int_shape(z_mean)[0]
dim = K.int_shape(z_mean)[1]
epsilon = K.random_normal(shape=(batch, dim))
return z_mean + K.exp(0.5 * z_log_var) * epsilon
class VariationalAutoencoder:
def __init__(self, latent_dim=64, hidden_dim=128, activation='relu', epochs=10, batch_size=64):
self.latent_dim = latent_dim
self.hidden_dim = hidden_dim
self.activation = activation
self.epochs = epochs
self.batch_size = batch_size
self.autoencoder = None
self.encoder = None
self.decoder = None
self.his = None
def _compile(self, input_dim):
"""
compile the computational graph
"""
input_vec = L.Input(batch_shape=(self.batch_size, input_dim))
hidden = L.Dense(self.hidden_dim, activation=self.activation)(input_vec)
z_mean = L.Dense(self.latent_dim)(hidden)
z_log_var = L.Dense(self.latent_dim)(hidden)
encoded = Sampling()([z_mean, z_log_var])
decoded = L.Dense(input_dim, activation="sigmoid")(encoded)
# custom loss
def vae_loss(y_true, y_pred):
reconstruction_loss = K.mean(
keras.losses.binary_crossentropy(y_true, y_pred)
)
kl_loss = 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var)
kl_loss = K.mean(kl_loss)
kl_loss *= -0.5
return reconstruction_loss + kl_loss
self.autoencoder = keras.Model(input_vec, decoded)
self.encoder = keras.Model(input_vec, encoded)
self.autoencoder.compile(optimizer='adam', loss=vae_loss)
def fit(self, X, verbose=2):
if not self.autoencoder:
self._compile(X.shape[1])
per_size = (len(X) * 0.9) // self.batch_size
train_size = int((per_size + 1) * self.batch_size)
X_shuffle = shuffle(X)
X_train = X_shuffle[:train_size]
X_test = X_shuffle[train_size:]
print("train size:", len(X_train))
print("dev size:", len(X_test))
self.autoencoder.fit(X_train, X_train,
epochs=self.epochs,
batch_size=self.batch_size,
shuffle=True,
callbacks=[keras.callbacks.EarlyStopping(monitor='val_loss', patience=5)],
validation_data=(X_test, X_test), verbose=verbose)
class Autoencoder:
def __init__(self, latent_dim=64, activation='relu', epochs=10, batch_size=64):
self.latent_dim = latent_dim
self.activation = activation
self.epochs = epochs
self.batch_size = batch_size
self.autoencoder = None
self.encoder = None
self.decoder = None
self.his = None
def _compile(self, input_dim):
"""
compile the computational graph
"""
input_vec = L.Input(shape=(input_dim,))
encoded = L.Dense(self.latent_dim, activation=self.activation)(input_vec)
decoded = L.Dense(input_dim, activation=self.activation)(encoded)
self.autoencoder = keras.Model(input_vec, decoded)
self.encoder = keras.Model(input_vec, encoded)
self.autoencoder.compile(optimizer='adam', loss='mean_squared_error')
def fit(self, X, verbose=2):
if not self.autoencoder:
self._compile(X.shape[1])
X_train, X_test = train_test_split(X)
self.autoencoder.fit(X_train, X_train,
epochs=self.epochs,
batch_size=self.batch_size,
shuffle=True,
callbacks=[keras.callbacks.EarlyStopping(monitor='val_loss', patience=5)],
validation_data=(X_test, X_test), verbose=verbose)
class AGN(L.Layer):
def __init__(self, epsilon=0.1, **kwargs):
super(AGN, self).__init__(**kwargs)
self.epsilon = epsilon
self.supports_masking = False
def call(self, inputs):
X, gi = inputs
fea_dim = K.int_shape(X)[-1]
valve = L.Dense(fea_dim, activation='sigmoid')(X)
X_t = L.Dense(fea_dim, activation='relu')(X)
upper = K.cast(K.greater(valve, 0.5 + self.epsilon), K.floatx())
lower = K.cast(K.less(valve, 0.5 - self.epsilon), K.floatx())
enhanced = X_t + (1.0 - (upper + lower)) * gi
return SelfAttention(return_attention=True)(enhanced)
def compute_output_shape(self, input_shape):
return [(input_shape[0][0], input_shape[0][1], input_shape[0][2]),
(input_shape[0][0], input_shape[0][1], input_shape[0][1])]
def compute_mask(self, inputs, mask=None):
return [mask, None]
class AGNClassifier:
""" Adaptive Gate Network
"""
def __init__(self, config):
self.config = config
# load pretrained bert
self.model = None
self.attn_model = None
self.build()
def build(self):
bert_model, _ = load_bert(
config_path=os.path.join(self.config['pretrained_model_dir'],
'bert_config.json'),
checkpoint_path=os.path.join(self.config['pretrained_model_dir'],
'bert_model.ckpt'),
)
text_mask = L.Lambda(lambda x: K.cast(
K.expand_dims(K.greater(x, 0), 2), K.floatx()))(bert_model.input[0])
# GI
gi_in = L.Input(name="gi", shape=(self.config["max_len"], ), dtype="float32")
gi = gi_in
# AGN
X = bert_model.output
gi = L.Dense(self.config['max_len'], activation='tanh')(gi) # (B, L)
gi = L.Lambda(lambda x: K.expand_dims(x, 2))(gi) # (B, L, 1)
X, attn_weight = AGN(epsilon=self.config['epsilon'])([X, gi])
X = L.Lambda(lambda x: x[0] - 1e10 * (1.0 - x[1]))([X, text_mask])
output = L.Lambda(lambda x: K.max(x, 1))(X)
#output = L.Dense(128, activation='relu')(output)
output = L.Dropout(self.config.get('dropout', 0.2))(output)
output = L.Dense(self.config['output_size'], activation='softmax')(output)
self.model = keras.Model(inputs=(*bert_model.input, gi_in), outputs=output)
self.attn_model = keras.Model(inputs=(*bert_model.input, gi_in), outputs=attn_weight)
optimizer = extend_with_weight_decay(Adam)
optimizer = extend_with_piecewise_linear_lr(optimizer)
optimizer_params = {
'learning_rate': self.config['learning_rate'],
'lr_schedule': {
self.config['steps_per_epoch'] * 2: 1,
self.config['steps_per_epoch'] * 3: 0.2,
self.config['steps_per_epoch'] * self.config['epochs']: 0.1
},
'weight_decay_rate': 0.01,
'exclude_from_weight_decay': ['Norm', 'bias'],
'bias_correction': False,
}
self.model.compile(
loss='sparse_categorical_crossentropy',
optimizer=optimizer(**optimizer_params),
)
self.model.summary()
if self.config.get('apply_fgm', True):
print('apply fgm')
fgm(self.model, 'Embedding-Token', self.config.get('fgm_epsilon', 0.2))