forked from AFAgarap/cnn-svm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
64 lines (51 loc) · 2.75 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# Copyright 2017 Abien Fred Agarap
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Implementation of the CNN classes"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
__version__ = '0.1.0'
__author__ = 'Abien Fred Agarap'
import argparse
from model.cnn_softmax import CNN
from model.cnn_svm import CNNSVM
from tensorflow.examples.tutorials.mnist import input_data
def parse_args():
parser = argparse.ArgumentParser(description='CNN & CNN-SVM for Image Classification')
group = parser.add_argument_group('Arguments')
group.add_argument('-m', '--model', required=True, type=str,
help='[1] CNN-Softmax, [2] CNN-SVM')
group.add_argument('-d', '--dataset', required=True, type=str,
help='path of the MNIST dataset')
group.add_argument('-p', '--penalty_parameter', required=False, type=int,
help='the SVM C penalty parameter')
group.add_argument('-c', '--checkpoint_path', required=True, type=str,
help='path where to save the trained model')
group.add_argument('-l', '--log_path', required=True, type=str,
help='path where to save the TensorBoard logs')
arguments = parser.parse_args()
return arguments
if __name__ == '__main__':
args = parse_args()
mnist = input_data.read_data_sets(args.dataset, one_hot=True)
num_classes = mnist.train.labels.shape[1]
sequence_length = mnist.train.images.shape[1]
model_choice = args.model
assert model_choice == '1' or model_choice == '2', "Invalid choice: Choose between 1 and 2 only."
if model_choice == '1':
model = CNN(alpha=1e-3, batch_size=128, num_classes=num_classes, num_features=sequence_length)
model.train(checkpoint_path=args.checkpoint_path, epochs=10000, log_path=args.log_path,
train_data=mnist.train, test_data=mnist.test)
elif model_choice == '2':
model = CNNSVM(alpha=1e-3, batch_size=128, num_classes=num_classes, num_features=sequence_length,
penalty_parameter=args.penalty_parameter)
model.train(checkpoint_path=args.checkpoint_path, epochs=10000, log_path=args.log_path,
train_data=mnist.train, test_data=mnist.test)