forked from smthemex/ComfyUI_StoryDiffusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Storydiffusion_node.py
1949 lines (1757 loc) · 86.6 KB
/
Storydiffusion_node.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# !/usr/bin/env python
# -*- coding: UTF-8 -*-
import datetime
import cv2
import numpy as np
import torch
import copy
import os
import random
from PIL import ImageFont
from safetensors.torch import load_file
from .ip_adapter.attention_processor import IPAttnProcessor2_0
import sys
import re
from .utils.gradio_utils import (
character_to_dict,
process_original_prompt,
get_ref_character,
cal_attn_mask_xl,
cal_attn_indice_xl_effcient_memory,
is_torch2_available,
)
from PIL import Image
from .utils.insightface_package import FaceAnalysis2, analyze_faces
if is_torch2_available():
from .utils.gradio_utils import AttnProcessor2_0 as AttnProcessor
else:
from .utils.gradio_utils import AttnProcessor
from huggingface_hub import hf_hub_download
from diffusers import (StableDiffusionXLPipeline, DiffusionPipeline, DDIMScheduler, ControlNetModel,
KDPM2AncestralDiscreteScheduler, LMSDiscreteScheduler,
AutoPipelineForInpainting, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler,
EulerDiscreteScheduler, HeunDiscreteScheduler, UNet2DConditionModel,
AutoPipelineForText2Image, StableDiffusionXLControlNetImg2ImgPipeline, KDPM2DiscreteScheduler,
EulerAncestralDiscreteScheduler, UniPCMultistepScheduler, AutoencoderKL,
StableDiffusionXLControlNetPipeline, DDPMScheduler, LCMScheduler)
from transformers import CLIPVisionModelWithProjection
from transformers import CLIPImageProcessor
from .kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256 import StableDiffusionXLPipeline as StableDiffusionXLPipelineKolors
from .kolors.models.modeling_chatglm import ChatGLMModel
from .kolors.models.tokenization_chatglm import ChatGLMTokenizer
from .kolors.models.unet_2d_condition import UNet2DConditionModel as UNet2DConditionModelkolor
from .kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter import StableDiffusionXLPipeline as StableDiffusionXLPipelinekoloripadapter
from .msdiffusion.models.projection import Resampler
from .msdiffusion.models.model import MSAdapter
from .msdiffusion.utils import get_phrase_idx, get_eot_idx
from diffusers.schedulers.scheduling_ddim import DDIMScheduler
import torch.nn.functional as F
from .utils.utils import get_comic
from .utils.style_template import styles
from .utils.load_models_utils import load_models, get_instance_path, get_lora_dict
import folder_paths
from comfy.utils import common_upscale
global total_count, attn_count, cur_step, mask1024, mask4096, attn_procs, unet
global sa32, sa64
global write
global height, width
STYLE_NAMES = list(styles.keys())
photomaker_dir=os.path.join(folder_paths.models_dir, "photomaker")
device = (
"cuda"
if torch.cuda.is_available()
else "mps" if torch.backends.mps.is_available() else "cpu"
)
MAX_SEED = np.iinfo(np.int32).max
dir_path = os.path.dirname(os.path.abspath(__file__))
path_dir = os.path.dirname(dir_path)
file_path = os.path.dirname(path_dir)
fonts_path = os.path.join(dir_path, "fonts")
fonts_lists = os.listdir(fonts_path)
lora_get = get_lora_dict()
lora_lightning_list = lora_get["lightning_xl_lora"]
diff_paths = []
for search_path in folder_paths.get_folder_paths("diffusers"):
if os.path.exists(search_path):
for root, subdir, files in os.walk(search_path, followlinks=True):
if "model_index.json" in files:
diff_paths.append(os.path.relpath(root, start=search_path))
if diff_paths:
diff_paths = ["none"] + [x for x in diff_paths if x]
else:
diff_paths = ["none", ]
control_paths = []
paths_a = []
for search_path in folder_paths.get_folder_paths("diffusers"):
if os.path.exists(search_path):
for root, subdir, files in os.walk(search_path, followlinks=True):
if "model_index.json" in files:
control_paths.append(os.path.relpath(root, start=search_path))
if "config.json" in files:
paths_a.append(os.path.relpath(root, start=search_path))
paths_a = ([z for z in paths_a if "controlnet-canny-sdxl-1.0" in z]
+ [p for p in paths_a if "MistoLine" in p]
+ [o for o in paths_a if "lcm-sdxl" in o]
+ [Q for Q in paths_a if "controlnet-openpose-sdxl-1.0" in Q]
+ [Z for Z in paths_a if "controlnet-scribble-sdxl-1.0" in Z]
+ [a for a in paths_a if "controlnet-depth-sdxl-1.0" in a]
+[b for b in paths_a if "controlnet-tile-sdxl-1.0" in b]
+[c for c in paths_a if "controlnet-zoe-depth-sdxl-1.0" in c]
+[d for d in paths_a if "sdxl-controlnet-seg " in d])
if control_paths != [] or paths_a != []:
control_paths = ["none"] + [x for x in control_paths if x] + [y for y in paths_a if y]
else:
control_paths = ["none", ]
scheduler_list = [
"Euler", "Euler a", "DDIM", "DDPM", "DPM++ 2M", "DPM++ 2M Karras", "DPM++ 2M SDE", "DPM++ 2M SDE Karras",
"DPM++ SDE", "DPM++ SDE Karras", "DPM2",
"DPM2 Karras", "DPM2 a", "DPM2 a Karras", "Heun", "LCM", "LMS", "LMS Karras", "UniPC"
]
def phi2narry(img):
img = torch.from_numpy(np.array(img).astype(np.float32) / 255.0).unsqueeze(0)
return img
def get_instance_path(path):
instance_path = os.path.normpath(path)
if sys.platform == 'win32':
instance_path = instance_path.replace('\\', "/")
return instance_path
def add_pil(list, list_add, num):
new_list = list[:num] + list_add + list[num:]
return new_list
def tensor_to_image(tensor):
image_np = tensor.squeeze().mul(255).clamp(0, 255).byte().numpy()
image = Image.fromarray(image_np, mode='RGB')
return image
# get fonts list
def has_parentheses(s):
return bool(re.search(r'\(.*?\)', s))
def contains_brackets(s):
return '[' in s or ']' in s
def narry_list(list_in):
for i in range(len(list_in)):
value = list_in[i]
modified_value = phi2narry(value)
list_in[i] = modified_value
return list_in
def remove_punctuation_from_strings(lst):
pattern = r"[\W]+$" # 匹配字符串末尾的所有非单词字符
return [re.sub(pattern, '', s) for s in lst]
def format_punctuation_from_strings(lst):
pattern = r"[\W]+$" # 匹配字符串末尾的所有非单词字符
return [re.sub(pattern, ';', s) for s in lst]
def phi_list(list_in):
for i in range(len(list_in)):
value = list_in[i]
list_in[i] = value
return list_in
def narry_list_pil(list_in):
for i in range(len(list_in)):
value = list_in[i]
modified_value = tensor_to_image(value)
list_in[i] = modified_value
return list_in
def get_local_path(file_path, model_path):
path = os.path.join(file_path, "models", "diffusers", model_path)
model_path = os.path.normpath(path)
if sys.platform.startswith('win32'):
model_path = model_path.replace('\\', "/")
return model_path
def setup_seed(seed):
torch.manual_seed(seed)
if device == "cuda":
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
def get_image_path_list(folder_name):
image_basename_list = os.listdir(folder_name)
image_path_list = sorted(
[os.path.join(folder_name, basename) for basename in image_basename_list]
)
return image_path_list
def apply_style_positive(style_name: str, positive: str):
p, n = styles.get(style_name, styles[style_name])
#print(p, "test0", n)
return p.replace("{prompt}", positive),n
def apply_style(style_name: str, positives: list, negative: str = ""):
p, n = styles.get(style_name, styles[style_name])
#print(p,"test1",n)
return [
p.replace("{prompt}", positive) for positive in positives
], n + " " + negative
def load_character_files(character_files: str):
if character_files == "":
raise "Please set a character file!"
character_files_arr = character_files.splitlines()
primarytext = []
for character_file_name in character_files_arr:
character_file = torch.load(
character_file_name, map_location=torch.device("cpu")
)
primarytext.append(character_file["character"] + character_file["description"])
return array2string(primarytext)
def array2string(arr):
stringtmp = ""
for i, part in enumerate(arr):
if i != len(arr) - 1:
stringtmp += part + "\n"
else:
stringtmp += part
return stringtmp
def find_directories(base_path):
directories = []
for root, dirs, files in os.walk(base_path):
for name in dirs:
directories.append(name)
return directories
base_pt = os.path.join(photomaker_dir,"pt")
if not os.path.exists(base_pt):
os.makedirs(base_pt)
pt_path_list = find_directories(base_pt)
if pt_path_list:
character_weights=["none"]+pt_path_list
else:
character_weights=["none",]
def get_scheduler(name):
scheduler = False
if name == "Euler":
scheduler = EulerDiscreteScheduler()
elif name == "Euler a":
scheduler = EulerAncestralDiscreteScheduler()
elif name == "DDIM":
scheduler = DDIMScheduler()
elif name == "DDPM":
scheduler = DDPMScheduler()
elif name == "DPM++ 2M":
scheduler = DPMSolverMultistepScheduler()
elif name == "DPM++ 2M Karras":
scheduler = DPMSolverMultistepScheduler(use_karras_sigmas=True)
elif name == "DPM++ 2M SDE":
scheduler = DPMSolverMultistepScheduler(algorithm_type="sde-dpmsolver++")
elif name == "DPM++ 2M SDE Karras":
scheduler = DPMSolverMultistepScheduler(use_karras_sigmas=True, algorithm_type="sde-dpmsolver++")
elif name == "DPM++ SDE":
scheduler = DPMSolverSinglestepScheduler()
elif name == "DPM++ SDE Karras":
scheduler = DPMSolverSinglestepScheduler(use_karras_sigmas=True)
elif name == "DPM2":
scheduler = KDPM2DiscreteScheduler()
elif name == "DPM2 Karras":
scheduler = KDPM2DiscreteScheduler(use_karras_sigmas=True)
elif name == "DPM2 a":
scheduler = KDPM2AncestralDiscreteScheduler()
elif name == "DPM2 a Karras":
scheduler = KDPM2AncestralDiscreteScheduler(use_karras_sigmas=True)
elif name == "Heun":
scheduler = HeunDiscreteScheduler()
elif name == "LCM":
scheduler = LCMScheduler()
elif name == "LMS":
scheduler = LMSDiscreteScheduler()
elif name == "LMS Karras":
scheduler = LMSDiscreteScheduler(use_karras_sigmas=True)
elif name == "UniPC":
scheduler = UniPCMultistepScheduler()
return scheduler
def set_attention_processor(unet, id_length, is_ipadapter=False):
global attn_procs
attn_procs = {}
for name in unet.attn_processors.keys():
cross_attention_dim = (
None
if name.endswith("attn1.processor")
else unet.config.cross_attention_dim
)
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
if cross_attention_dim is None:
if name.startswith("up_blocks"):
attn_procs[name] = SpatialAttnProcessor2_0(id_length=id_length)
else:
attn_procs[name] = AttnProcessor()
else:
if is_ipadapter:
attn_procs[name] = IPAttnProcessor2_0(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
scale=1,
num_tokens=4,
).to(unet.device, dtype=torch.float16)
else:
attn_procs[name] = AttnProcessor()
unet.set_attn_processor(copy.deepcopy(attn_procs))
def load_single_character_weights(unet, filepath):
"""
从指定文件中加载权重到 attention_processor 类的 id_bank 中。
参数:
- model: 包含 attention_processor 类实例的模型。
- filepath: 权重文件的路径。
"""
# 使用torch.load来读取权重
weights_to_load = torch.load(filepath, map_location=torch.device("cpu"))
character = weights_to_load["character"]
description = weights_to_load["description"]
#print(character)
for attn_name, attn_processor in unet.attn_processors.items():
if isinstance(attn_processor, SpatialAttnProcessor2_0):
# 转移权重到GPU(如果GPU可用的话)并赋值给id_bank
attn_processor.id_bank[character] = {}
for step_key in weights_to_load[attn_name].keys():
attn_processor.id_bank[character][step_key] = [
tensor.to(unet.device)
for tensor in weights_to_load[attn_name][step_key]
]
print("successsfully,load_single_character_weights")
def load_character_files_on_running(unet, character_files: str):
if character_files == "":
return False
weights_list = os.listdir(character_files)#获取路径下的权重列表
#character_files_arr = character_files.splitlines()
for character_file in weights_list:
path_cur=os.path.join(character_files,character_file)
load_single_character_weights(unet, path_cur)
return True
def save_single_character_weights(unet, character, description, filepath):
"""
保存 attention_processor 类中的 id_bank GPU Tensor 列表到指定文件中。
参数:
- model: 包含 attention_processor 类实例的模型。
- filepath: 权重要保存到的文件路径。
"""
weights_to_save = {}
weights_to_save["description"] = description
weights_to_save["character"] = character
for attn_name, attn_processor in unet.attn_processors.items():
if isinstance(attn_processor, SpatialAttnProcessor2_0):
# 将每个 Tensor 转到 CPU 并转为列表,以确保它可以被序列化
#print(attn_name, attn_processor)
weights_to_save[attn_name] = {}
for step_key in attn_processor.id_bank[character].keys():
weights_to_save[attn_name][step_key] = [
tensor.cpu()
for tensor in attn_processor.id_bank[character][step_key]
]
# 使用torch.save保存权重
torch.save(weights_to_save, filepath)
def save_results(unet):
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
weight_folder_name =os.path.join(base_pt,f"{timestamp}")
#创建文件夹
if not os.path.exists(weight_folder_name):
os.makedirs(weight_folder_name)
global character_dict
for char in character_dict:
description = character_dict[char]
save_single_character_weights(unet,char,description,os.path.join(weight_folder_name, f'{char}.pt'))
class SpatialAttnProcessor2_0(torch.nn.Module):
r"""
Attention processor for IP-Adapater for PyTorch 2.0.
Args:
hidden_size (`int`):
The hidden size of the attention layer.
cross_attention_dim (`int`):
The number of channels in the `encoder_hidden_states`.
text_context_len (`int`, defaults to 77):
The context length of the text features.
scale (`float`, defaults to 1.0):
the weight scale of image prompt.
"""
def __init__(
self,
hidden_size=None,
cross_attention_dim=None,
id_length=4,
device=device,
dtype=torch.float16,
):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError(
"AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
)
self.device = device
self.dtype = dtype
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
self.total_length = id_length + 1
self.id_length = id_length
self.id_bank = {}
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
# un_cond_hidden_states, cond_hidden_states = hidden_states.chunk(2)
# un_cond_hidden_states = self.__call2__(attn, un_cond_hidden_states,encoder_hidden_states,attention_mask,temb)
# 生成一个0到1之间的随机数
global total_count, attn_count, cur_step, indices1024, indices4096
global sa32, sa64
global write
global height, width
global character_dict
global character_index_dict, invert_character_index_dict, cur_character, ref_indexs_dict, ref_totals, cur_character
if attn_count == 0 and cur_step == 0:
indices1024, indices4096 = cal_attn_indice_xl_effcient_memory(
self.total_length,
self.id_length,
sa32,
sa64,
height,
width,
device=self.device,
dtype=self.dtype,
)
if write:
assert len(cur_character) == 1
if hidden_states.shape[1] == (height // 32) * (width // 32):
indices = indices1024
else:
indices = indices4096
# print(f"white:{cur_step}")
total_batch_size, nums_token, channel = hidden_states.shape
img_nums = total_batch_size // 2
hidden_states = hidden_states.reshape(-1, img_nums, nums_token, channel)
# print(img_nums,len(indices),hidden_states.shape,self.total_length)
if cur_character[0] not in self.id_bank:
self.id_bank[cur_character[0]] = {}
self.id_bank[cur_character[0]][cur_step] = [
hidden_states[:, img_ind, indices[img_ind], :]
.reshape(2, -1, channel)
.clone()
for img_ind in range(img_nums)
]
hidden_states = hidden_states.reshape(-1, nums_token, channel)
# self.id_bank[cur_step] = [hidden_states[:self.id_length].clone(), hidden_states[self.id_length:].clone()]
else:
# encoder_hidden_states = torch.cat((self.id_bank[cur_step][0].to(self.device),self.id_bank[cur_step][1].to(self.device)))
# TODO: ADD Multipersion Control
encoder_arr = []
for character in cur_character:
encoder_arr = encoder_arr + [
tensor.to(self.device)
for tensor in self.id_bank[character][cur_step]
]
# 判断随机数是否大于0.5
if cur_step < 1:
hidden_states = self.__call2__(
attn, hidden_states, None, attention_mask, temb
)
else: # 256 1024 4096
random_number = random.random()
if cur_step < 20:
rand_num = 0.3
else:
rand_num = 0.1
# print(f"hidden state shape {hidden_states.shape[1]}")
if random_number > rand_num:
if hidden_states.shape[1] == (height // 32) * (width // 32):
indices = indices1024
else:
indices = indices4096
# print("before attention",hidden_states.shape,attention_mask.shape,encoder_hidden_states.shape if encoder_hidden_states is not None else "None")
if write:
total_batch_size, nums_token, channel = hidden_states.shape
img_nums = total_batch_size // 2
hidden_states = hidden_states.reshape(
-1, img_nums, nums_token, channel
)
encoder_arr = [
hidden_states[:, img_ind, indices[img_ind], :].reshape(
2, -1, channel
)
for img_ind in range(img_nums)
]
for img_ind in range(img_nums):
# print(img_nums)
# assert img_nums != 1
img_ind_list = [i for i in range(img_nums)]
# print(img_ind_list,img_ind)
img_ind_list.remove(img_ind)
# print(img_ind,invert_character_index_dict[img_ind])
# print(character_index_dict[invert_character_index_dict[img_ind]])
# print(img_ind_list)
# print(img_ind,img_ind_list)
encoder_hidden_states_tmp = torch.cat(
[encoder_arr[img_ind] for img_ind in img_ind_list]
+ [hidden_states[:, img_ind, :, :]],
dim=1,
)
hidden_states[:, img_ind, :, :] = self.__call2__(
attn,
hidden_states[:, img_ind, :, :],
encoder_hidden_states_tmp,
None,
temb,
)
else:
_, nums_token, channel = hidden_states.shape
# img_nums = total_batch_size // 2
# encoder_hidden_states = encoder_hidden_states.reshape(-1,img_nums,nums_token,channel)
hidden_states = hidden_states.reshape(2, -1, nums_token, channel)
# encoder_arr = [encoder_hidden_states[:,img_ind,indices[img_ind],:].reshape(2,-1,channel) for img_ind in range(img_nums)]
encoder_hidden_states_tmp = torch.cat(
encoder_arr + [hidden_states[:, 0, :, :]], dim=1
)
hidden_states[:, 0, :, :] = self.__call2__(
attn,
hidden_states[:, 0, :, :],
encoder_hidden_states_tmp,
None,
temb,
)
hidden_states = hidden_states.reshape(-1, nums_token, channel)
else:
hidden_states = self.__call2__(
attn, hidden_states, None, attention_mask, temb
)
attn_count += 1
if attn_count == total_count:
attn_count = 0
cur_step += 1
indices1024, indices4096 = cal_attn_indice_xl_effcient_memory(
self.total_length,
self.id_length,
sa32,
sa64,
height,
width,
device=self.device,
dtype=self.dtype,
)
return hidden_states
def __call2__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(
batch_size, channel, height * width
).transpose(1, 2)
batch_size, sequence_length, channel = hidden_states.shape
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(
attention_mask, sequence_length, batch_size
)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(
batch_size, attn.heads, -1, attention_mask.shape[-1]
)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
1, 2
)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states # B, N, C
# else:
# encoder_hidden_states = encoder_hidden_states.view(-1,self.id_length+1,sequence_length,channel).reshape(-1,(self.id_length+1) * sequence_length,channel)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(
batch_size, -1, attn.heads * head_dim
)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(
batch_size, channel, height, width
)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
def process_generation(
pipe,
upload_images,
model_type,
_num_steps,
style_name,
_Ip_Adapter_Strength,
_style_strength_ratio,
guidance_scale,
seed_,
id_length,
general_prompt,
negative_prompt,
prompt_array,
width,
height,
load_chars,
lora,
trigger_words,photomake_mode,use_kolor,use_flux,
): # Corrected font_choice usage
if len(general_prompt.splitlines()) >= 3:
raise "Support for more than three characters is temporarily unavailable due to VRAM limitations, but this issue will be resolved soon."
# _model_type = "Photomaker" if _model_type == "Using Ref Images" else "original"
if not use_kolor and not use_flux:
if model_type == "img2img" and "img" not in general_prompt:
raise 'Please choice img2img typle,and add the triger word " img " behind the class word you want to customize, such as: man img or woman img'
global total_length, attn_procs, cur_model_type
global write
global cur_step, attn_count
#load_chars = load_character_files_on_running(unet, character_files=char_files)
prompts_origin = prompt_array.splitlines()
prompts = [prompt for prompt in prompts_origin if not has_parentheses(prompt)] # 剔除双角色
if use_kolor:
add_trigger_words = "," + trigger_words + " " + "风格" + ";"
else:
add_trigger_words = "," + trigger_words + " " + "style" + ";"
if lora != "none":
if lora in lora_lightning_list:
prompts = remove_punctuation_from_strings(prompts)
else:
prompts = remove_punctuation_from_strings(prompts)
prompts = [item + add_trigger_words for item in prompts]
global character_index_dict, invert_character_index_dict, ref_indexs_dict, ref_totals
global character_dict
character_dict, character_list = character_to_dict(general_prompt, lora, add_trigger_words)
#print(character_dict)
start_merge_step = int(float(_style_strength_ratio) / 100 * _num_steps)
if start_merge_step > 30:
start_merge_step = 30
print(f"start_merge_step:{start_merge_step}")
generator = torch.Generator(device=device).manual_seed(seed_)
clipped_prompts = prompts[:]
nc_indexs = []
for ind, prompt in enumerate(clipped_prompts):
if "[NC]" in prompt:
nc_indexs.append(ind)
if ind < id_length:
raise f"The first {id_length} row is id prompts, cannot use [NC]!"
prompts = [
prompt if "[NC]" not in prompt else prompt.replace("[NC]", "")
for prompt in clipped_prompts
]
if lora != "none":
if lora in lora_lightning_list:
prompts = [
prompt.rpartition("#")[0] if "#" in prompt else prompt for prompt in prompts
]
else:
prompts = [
prompt.rpartition("#")[0] + add_trigger_words if "#" in prompt else prompt for prompt in prompts
]
else:
prompts = [
prompt.rpartition("#")[0] if "#" in prompt else prompt for prompt in prompts
]
# id_prompts = prompts[:id_length]
(
character_index_dict,
invert_character_index_dict,
replace_prompts,
ref_indexs_dict,
ref_totals,
) = process_original_prompt(character_dict, prompts, id_length)
if model_type == "img2img":
# _upload_images = [_upload_images]
input_id_images_dict = {}
if len(upload_images) != len(character_dict.keys()):
raise f"You upload images({len(upload_images)}) is not equal to the number of characters({len(character_dict.keys())})!"
for ind, img in enumerate(upload_images):
input_id_images_dict[character_list[ind]] = [img] # 已经pil转化了 不用load
# input_id_images_dict[character_list[ind]] = [load_image(img)]
# real_prompts = prompts[id_length:]
if device == "cuda":
torch.cuda.empty_cache()
write = True
cur_step = 0
attn_count = 0
#id_prompts_no_using, negative_prompt = apply_style(style_name, ["id_prompts"], negative_prompt)
#setup_seed(seed_)
total_results = []
id_images = []
results_dict = {}
p_num=0
if photomake_mode=="v2":
face_detector = FaceAnalysis2(providers=['CUDAExecutionProvider'], allowed_modules=['detection', 'recognition'])
face_detector.prepare(ctx_id=0, det_size=(640, 640))
global cur_character
if not load_chars:
for character_key in character_dict.keys():# 先生成角色对应第一句场景提示词的图片
cur_character = [character_key]
ref_indexs = ref_indexs_dict[character_key]
current_prompts = [replace_prompts[ref_ind] for ref_ind in ref_indexs]
setup_seed(seed_)
generator = torch.Generator(device=device).manual_seed(seed_)
cur_step = 0
cur_positive_prompts, negative_prompt = apply_style(
style_name, current_prompts, negative_prompt
)
if use_kolor:
negative_prompt=[negative_prompt]
if model_type == "txt2img":
if use_flux:
id_images = pipe(
prompt=cur_positive_prompts,
num_inference_steps=_num_steps,
guidance_scale=guidance_scale,
output_type="pil",
max_sequence_length=256,
height=height,
width=width,
generator=torch.Generator("cpu").manual_seed(0)
).images
else:
id_images = pipe(
cur_positive_prompts,
num_inference_steps=_num_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
negative_prompt=negative_prompt,
generator=generator
).images
elif model_type == "img2img":
if use_kolor:
pipe.set_ip_adapter_scale([_Ip_Adapter_Strength])
id_images = pipe(
prompt=cur_positive_prompts,
ip_adapter_image=input_id_images_dict[character_key],
negative_prompt=negative_prompt,
num_inference_steps=_num_steps,
height=height,
width=width,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
generator=generator,
).images
elif use_flux:
id_images = pipe(
prompt=cur_positive_prompts,
latents=None,
num_inference_steps=_num_steps,
height=height,
width=width,
output_type="pil",
max_sequence_length=256,
guidance_scale=guidance_scale,
generator=torch.Generator("cpu").manual_seed(0),
).images
else:
if photomake_mode == "v2":
# 提取id
# print("v2 mode load_chars", cur_positive_prompts, negative_prompt, character_key)
img = input_id_images_dict[character_key][
0] # input_id_images_dict {'[Taylor]': [pil], '[Lecun]': [pil]}
img = np.array(img)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
faces = analyze_faces(face_detector, img, )
id_embed_list = [torch.from_numpy((faces[0]['embedding']))]
id_embeds = torch.stack(id_embed_list)
id_images = pipe(
cur_positive_prompts,
input_id_images=input_id_images_dict[character_key],
num_inference_steps=_num_steps,
guidance_scale=guidance_scale,
start_merge_step=start_merge_step,
height=height,
width=width,
negative_prompt=negative_prompt,
id_embeds=id_embeds,
generator=generator
).images
else:
# print("v1 mode,load_chars", cur_positive_prompts, negative_prompt,character_key )
id_images = pipe(
cur_positive_prompts,
input_id_images=input_id_images_dict[character_key],
num_inference_steps=_num_steps,
guidance_scale=guidance_scale,
start_merge_step=start_merge_step,
height=height,
width=width,
negative_prompt=negative_prompt,
generator=generator
).images
else:
raise NotImplementedError(
"You should choice between original and Photomaker!",
f"But you choice {model_type}",
)
p_num+=1
# total_results = id_images + total_results
# yield total_results
for ind, img in enumerate(id_images):
results_dict[ref_indexs[ind]] = img
# real_images = []
yield [results_dict[ind] for ind in results_dict.keys()]
write = False
if not load_chars:
real_prompts_inds = [
ind for ind in range(len(prompts)) if ind not in ref_totals
]
else:
real_prompts_inds = [ind for ind in range(len(prompts))]
#print(real_prompts_inds)
real_prompt_no, negative_prompt_style = apply_style_positive(style_name, "real_prompt")
negative_prompt=str(negative_prompt)+str(negative_prompt_style)
for real_prompts_ind in real_prompts_inds: # 非角色流程
real_prompt = replace_prompts[real_prompts_ind]
cur_character = get_ref_character(prompts[real_prompts_ind], character_dict)
#print(cur_character)
setup_seed(seed_)
if len(cur_character) > 1 and model_type == "img2img":
raise "Temporarily Not Support Multiple character in Ref Image Mode!"
generator = torch.Generator(device=device).manual_seed(seed_)
cur_step = 0
real_prompt ,negative_prompt_style_no= apply_style_positive(style_name, real_prompt)
#print(real_prompt)
if model_type == "txt2img":
# print(results_dict,real_prompts_ind)
if use_flux:
results_dict[real_prompts_ind] = pipe(
prompt= real_prompt,
num_inference_steps=_num_steps,
guidance_scale=guidance_scale,
output_type="pil",
max_sequence_length=256,
height=height,
width=width,
generator=torch.Generator("cpu").manual_seed(seed_)
).images[0]
else:
results_dict[real_prompts_ind] = pipe(
real_prompt,
num_inference_steps=_num_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
negative_prompt=negative_prompt,
generator=generator,
).images[0]
elif model_type == "img2img":
if use_kolor:
empty_img=Image.new('RGB', (height, width), (255, 255, 255))
results_dict[real_prompts_ind] = pipe(
prompt = real_prompt,
ip_adapter_image = [(
input_id_images_dict[cur_character[0]]
if real_prompts_ind not in nc_indexs
else empty_img
),],
negative_prompt = negative_prompt,
height = height,
width = width,
num_inference_steps = _num_steps,
guidance_scale = guidance_scale,
num_images_per_prompt = 1,
generator = generator,
nc_flag=True if real_prompts_ind in nc_indexs else False, # nc_flag,用索引标记,主要控制非角色人物的生成,默认false
).images[0]
elif use_flux:
results_dict[real_prompts_ind]=pipe(
prompt=real_prompt,
latents=None,
num_inference_steps=_num_steps,
height=height,
width=width,
output_type="pil",
max_sequence_length=256,