-
Notifications
You must be signed in to change notification settings - Fork 0
/
filter.v
625 lines (589 loc) · 27.7 KB
/
filter.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
(**********************************************************************)
(* This is part of filter, it is distributed under the terms of *)
(* the GNU Lesser General Public License version 3 *)
(* (see file LICENSE for more details) *)
(* *)
(* Copyright 2022-2025 *)
(* Guowei Dou and Wensheng Yu *)
(**********************************************************************)
(** filter *)
Require Export infinite_set.
(* A上的滤子和超滤 *)
(* 定义 滤子:设A的子集族F⊂pow(A)满足:
1. Φ∉F 且 A∈F
2. 若a∈F,b∈F, 则a∩b∈F (对交封闭)
3. 若a⊂b⊂W 且 a∈F, 则b∈F (大集性质)
则F叫A上的滤子. *)
Definition Filter F A := F ⊂ pow(A) /\ Φ ∉ F /\ A ∈ F
/\ (∀ a b, a ∈ F -> b ∈ F -> (a ∩ b) ∈ F)
/\ (∀ a b, a ⊂ b -> b ⊂ A -> a ∈ F -> b ∈ F).
(*滤子是集*)
Corollary Filter_is_Set_Co1 : ∀ F A, Filter F A -> Ensemble A.
Proof.
intros. destruct H as [_[_[]]]; eauto.
Qed.
Corollary Filter_is_Set_Co2 : ∀ F A, Filter F A -> Ensemble F.
Proof.
intros. pose proof H. apply Filter_is_Set_Co1 in H.
destruct H0. apply MKT33 in H0; auto. apply MKT38a; auto.
Qed.
Global Hint Resolve Filter_is_Set_Co1 Filter_is_Set_Co2 : Fi.
(* 定义 超滤:在滤子的条件下,如果F满足极大性:
任意A的子集a都有 a∈F 或者 (A~a)∈F
则F叫A上的超滤. *)
Definition ultraFilter F A := Filter F A
/\ (∀ a, a ⊂ A -> a ∈ F \/ (A ~ a) ∈ F).
(* 定义 极大滤子:若G和F都是A上的滤子,并且由F⊂G可以推出G=F,
则称F为A上的极大滤子. *)
Definition maxFilter F A := Filter F A
/\ (∀ G, Filter G A -> F ⊂ G -> G = F).
(* 超滤和极大滤子等价 *)
Corollary ultraFilter_Equ_maxFilter :
∀ F A, ultraFilter F A <-> maxFilter F A.
Proof.
split; intros; destruct H; split; auto; intros.
- apply MKT27; split; auto. red; intros.
assert (z ⊂ A).
{ destruct H1. apply H1,AxiomII in H3; tauto. }
pose proof H4. apply H0 in H5 as []; auto.
destruct H1 as [_[H1[H6[]]]]. apply H2,(H7 z) in H5; auto.
elim H1. replace Φ with (z ∩ (A ~ z)); auto.
apply AxiomI; split; intros; elim (@ MKT16 z0); auto.
apply MKT4' in H9 as []. apply MKT4' in H10 as [].
apply AxiomII in H11 as []. contradiction.
- apply NNPP; intro. apply notandor in H2 as [].
assert (∀ b, b ∈ F -> a ∩ b <> Φ).
{ intros. intro. assert (b ⊂ (A ~ a)).
{ red; intros. destruct H. apply H,AxiomII in H4 as [].
apply MKT4'; split; auto. apply AxiomII; split; eauto.
intro. elim (@ MKT16 z). rewrite <-H5. apply MKT4'; auto. }
elim H3. destruct H as [_[_[_[]]]]. apply (H7 b); auto.
red; intros. apply MKT4' in H8; tauto. }
assert (Filter (\{ λ u, u ∈ F \/ (∃ v, v ∈ F
/\ (u = a ∩ v \/ ((a ∩ v) ⊂ u /\ u ⊂ A))) \}) A).
{ destruct H as [H[H5[H6[]]]]. repeat split; intros.
- red; intros. apply AxiomII in H9 as [H9[]]; auto.
destruct H10 as [v[H10[H11|[]]]].
apply AxiomII; split; eauto. rewrite H11. red; intros.
apply MKT4' in H12 as []; auto. apply AxiomII; auto.
- intro. apply AxiomII in H9 as [H9[]]. contradiction.
destruct H10 as [v[H10[H11|[]]]]; apply H4 in H10; auto.
elim H10. apply MKT27; auto.
- apply AxiomII; split; eauto.
- apply AxiomII in H9 as [],H10 as [].
assert (Ensemble (a0 ∩ b)).
{ apply (MKT33 a0); auto. red; intros.
apply MKT4' in H13; tauto. }
apply AxiomII. split; auto. destruct H11,H12; auto;
try destruct H11 as [u[]]; try destruct H12 as [v[]].
+ destruct H14 as [H14|[]]. right. exists (a0 ∩ v).
split. apply H7; auto. left. rewrite H14.
rewrite <-MKT7',(MKT6' a0 a),MKT7'; auto.
right. exists (a0 ∩ v). split. apply H7; auto.
right. split; unfold Included; intros.
apply MKT4' in H16 as []. apply MKT4' in H17 as [].
apply MKT4'; split; auto. apply H14,MKT4'; auto.
apply MKT4' in H16 as []; auto.
+ destruct H14 as [H14|[]]. right. exists (u ∩ b).
split. apply H7; auto. left. rewrite H14,MKT7'; auto.
right. exists (u ∩ b). split. apply H7; auto. right.
split; unfold Included; intros. apply MKT4' in H16 as [].
apply MKT4' in H17 as []. apply MKT4'; split; auto.
apply H14,MKT4'; auto. apply MKT4' in H16 as []; auto.
+ destruct H14 as [H14|[]],H15 as [H15|[]];
right; exists (u ∩ v); split; auto.
* left. rewrite H14,H15. rewrite (MKT6' a u),MKT7',
<-(MKT7' a a v),MKT5',<-MKT7',(MKT6' u a),MKT7'; auto.
* right. split; unfold Included; intros.
rewrite H14. apply MKT4' in H17 as [].
apply MKT4' in H18 as []; auto. apply MKT4'; split.
apply MKT4'; auto. apply H15,MKT4'; auto.
apply MKT4' in H17 as []; auto.
* right. split; unfold Included; intros.
apply MKT4' in H17 as []. apply MKT4' in H18 as [].
apply MKT4'; split. apply H14,MKT4'; auto.
rewrite H15. apply MKT4'; auto.
apply MKT4' in H17 as []; auto.
* right. split; unfold Included; intros.
apply MKT4' in H18 as []. apply MKT4' in H19 as [].
apply MKT4'; split. apply H14,MKT4'; auto.
apply H15,MKT4'; auto. apply MKT4' in H18 as []; auto.
- apply AxiomII in H11 as []. apply AxiomII; split.
apply (MKT33 A); eauto. destruct H12.
+ left. apply (H8 a0 b); auto.
+ destruct H12 as [v[H12[]]]; right; exists v;
split; auto; right; [rewrite <-H13|split]; auto.
destruct H13. eapply MKT28; eauto. }
assert ((\{ λ u, u ∈ F \/ (∃ v, v ∈ F
/\ (u = a ∩ v \/ ((a ∩ v) ⊂ u /\ u ⊂ A))) \}) = F).
{ apply H0; auto. unfold Included; intros.
apply AxiomII; split. eauto. left; auto. }
assert (Ensemble a). { apply (MKT33 A); eauto with Fi. }
elim H2. rewrite <-H6. apply AxiomII; split; auto.
right. exists A. destruct H as [_[_[]]]. split; auto.
left. symmetry. apply MKT30; auto.
Qed.
(* 单点集[A]是A上的滤子 *)
Example Example1 : ∀ A, Ensemble A -> A <> Φ -> Filter ([A]) A.
Proof.
intros. repeat split; intros.
- unfold Included; intros. apply MKT41 in H1; eauto.
apply AxiomII; split. rewrite H1; eauto. rewrite H1.
unfold Included; auto.
- intro. apply MKT41 in H1; eauto.
- apply MKT41; auto.
- apply MKT41 in H1,H2; eauto. rewrite H1,H2,MKT5'.
apply MKT41; auto.
- apply MKT41 in H3; auto. rewrite H3 in H1.
apply MKT41; auto. apply MKT27; auto.
Qed.
(* 定理1 超滤的一个性质 *)
Theorem FT1 : ∀ F A a1 a2, ultraFilter F A -> (a1 ∪ a2) ∈ F
-> a1 ∈ F \/ a2 ∈ F.
Proof.
intros. destruct H as [[H[H1[H2[]]]]].
assert ((A ~ (a1 ∪ a2)) ∉ F).
{ intro. assert (((a1 ∪ a2) ∩ (A ~ (a1 ∪ a2))) ∈ F).
apply H3; auto. unfold Setminus in H7.
rewrite (MKT6' A _),<-MKT7' in H7.
replace ((a1 ∪ a2) ∩ (¬ (a1 ∪ a2))) with Φ in H7.
rewrite MKT17' in H7; auto.
apply AxiomI; split; intros. elim (@ MKT16 z); auto.
apply MKT4' in H8 as []. apply AxiomII in H9 as [].
contradiction. }
replace (A ~ (a1 ∪ a2)) with ((A ~ a1) ∩ (A ~ a2)) in H6.
assert ((A ~ a1) ∉ F \/ (A ~ a2) ∉ F).
{ apply NNPP; intro. apply notandor in H7 as [].
apply (NNPP ((A ~ a1) ∈ F)) in H7.
apply (NNPP ((A ~ a2) ∈ F)) in H8.
elim H6. apply H3; auto. }
assert (a1 ⊂ A /\ a2 ⊂ A) as [].
{ apply H in H0. apply AxiomII in H0 as []. split.
assert (a1 ⊂ (a1 ∪ a2)). unfold Included; intros.
apply MKT4; auto. eapply MKT28; eauto.
assert (a2 ⊂ (a1 ∪ a2)). unfold Included; intros.
apply MKT4; auto. eapply MKT28; eauto. }
apply H5 in H8; apply H5 in H9. destruct H7;[destruct H8;
[auto|contradiction]|destruct H9;[auto|contradiction]].
apply AxiomI; split; intros.
- apply MKT4' in H7 as []. apply MKT4' in H7 as [].
apply MKT4' in H8 as []. apply MKT4'. split; auto.
apply AxiomII; split. eauto. intro.
apply AxiomII in H9 as []; apply AxiomII in H10 as [].
apply MKT4 in H11 as []; contradiction.
- apply MKT4' in H7 as []. apply AxiomII in H8 as [].
apply MKT4'; split. apply MKT4'; split; auto.
apply AxiomII; split; auto. intro. elim H9. apply MKT4; auto.
apply MKT4'; split; auto. apply AxiomII; split; auto.
intro; elim H9. apply MKT4; auto.
Qed.
(* 定理1的推广 *)
Corollary FT1_Corollary : ∀ F A B, ultraFilter F A
-> Finite B -> ∪B ∈ F -> ∃ b, b ∈ B /\ b ∈ F.
Proof.
intros. set (Q := fun n => ∀ D, P[D] = n
-> ∪D ∈ F -> ∃ d, d ∈ D /\ d ∈ F).
assert (∀ n, n ∈ ω -> Q n).
{ apply Mathematical_Induction.
- unfold Q; intros. assert (D = Φ).
{ assert (P[Φ] = Φ).
{ pose proof MKT152a. pose proof MKT152b.
pose proof MKT152c. assert (Φ ∈ dom(P)).
{ rewrite H5. apply MKT19. eauto. }
apply Property_Value in H7; auto. destruct H4.
apply (H8 Φ); auto. apply AxiomII'; repeat split.
apply MKT49a; eauto. apply MKT145.
apply MKT164; auto. }
rewrite <-H4 in H2. apply MKT154 in H2;
try split; eauto; try apply Property_Finite.
apply AxiomI; split; intros; elim (@ MKT16 z); auto.
destruct H2 as [f[[][]]]. rewrite <-H7 in H5.
apply Property_Value,Property_ran in H5; auto.
rewrite H8 in H5. elim (@ MKT16 (f[z])); auto.
unfold Finite. rewrite H2,H4; auto. }
rewrite H4,MKT24' in H3. destruct H as [[H[]]]. elim H5; auto.
- intros. unfold Q; intros. pose proof H4.
apply Inf_P7_Lemma in H6 as [D'[d[H6[H7[H8[]]]]]]; auto.
assert (∪D = (∪D') ∪ d).
{ apply AxiomI; split; intros.
- apply AxiomII in H11 as [H11[x[]]]. rewrite H10 in H13.
apply MKT4 in H13 as [].
+ apply MKT4; left. apply AxiomII; split; eauto.
+ apply MKT4; right. apply MKT41 in H13; auto.
rewrite <-H13; auto.
- apply AxiomII; split; eauto. apply MKT4 in H11 as [].
+ apply AxiomII in H11 as [H11[x[]]]. exists x.
split; auto. rewrite H10. apply MKT4; auto.
+ exists d. split; auto. rewrite H10. apply MKT4; right.
apply MKT41; auto. }
rewrite H11 in H5. apply (FT1 F A) in H5 as []; auto.
+ apply H3 in H5 as [x[]]; auto. exists x. split; auto.
rewrite H10. apply MKT4; auto.
+ exists d. split; auto. rewrite H10. apply MKT4; right.
apply MKT41; auto. }
apply H2 in H0. apply H0; auto.
Qed.
(* 定义 自由超滤:在超滤的条件下,如果A的任意有限子集都不属于F,则F为A上的自由超滤.
换言之,F中的元素集均为无限的,因而自由超滤是针对无限集而言的. *)
Definition free_ultraFilter F A := ultraFilter F A
/\ (∀ a, a ⊂ A -> Finite a -> a ∉ F).
(* 自由超滤中的元素集都是无限的 *)
Corollary free_ultraFilter_Co1 : ∀ F A, free_ultraFilter F A
-> (∀ x, x ∈ F -> ~ Finite x).
Proof.
intros. intro. destruct H. destruct H as [[H[H3[H4[]]]]].
pose proof H0. apply H in H8. apply AxiomII in H8 as [].
eapply H2; eauto.
Qed.
(* 对于任意一个有限集, 不存在其上的自由超滤 *)
Corollary free_ultraFilter_Co2 : ∀ A, Finite A ->
~ ∃ F, free_ultraFilter F A.
Proof.
intros. intro. destruct H0 as [F[[[H0[H1[H2[]]]]]]].
apply (H6 A); auto.
Qed.
(* 定义 一个特殊滤子Fσ,不满足超滤的条件,但是满足自由超滤的附加条件
Fσ叫做余有限子集滤子 或者 叫做Fréchet滤子 *)
Definition Fσ A := \{ λ a, a ⊂ A /\ Finite (A ~ a) \}.
(* Fréchet滤子也需要对无限集讨论, 否则意义不大 *)
Corollary Fσ_Co1_a : ∀ A, Finite A -> Fσ A = pow(A).
Proof.
intros. apply AxiomI; split; intros.
- apply AxiomII in H0 as [H0[]]. apply AxiomII; auto.
- apply AxiomII in H0 as []. apply AxiomII; repeat split; auto.
apply (@ finsub A); auto. red; intros. apply MKT4' in H2; tauto.
Qed.
Corollary Fσ_Co1_b : ∀ A, Finite A -> ~ Filter (Fσ A) A.
Proof.
intros. intro. destruct H0 as [_[]]. rewrite Fσ_Co1_a in H0; auto.
apply H0,AxiomII; split; auto.
Qed.
(* 这里有 Ensemble 的条件, 不必讨论真类 *)
Corollary Fσ_Co2 : ∀ A, ~ Finite A -> Ensemble A
-> (Fσ A) ⊂ pow(A) /\ (Fσ A) <> pow(A).
Proof.
intros. split. red; intros.
apply AxiomII in H1 as [H1[]]. apply AxiomII; auto. intro.
New H0. apply Inf_P8 in H2 as [A1[A2[H2[H3[H4[H5[]]]]]]]; auto.
assert (A1 ∈ pow(A)).
{ apply AxiomII; split; auto; rewrite <-H6; unfold Included;
intros; apply MKT4; auto. }
rewrite <-H1 in H8. apply AxiomII in H8 as [H8[]].
assert (A ~ A1 = A2).
{ apply AxiomI; split; intros. apply MKT4' in H11 as [].
rewrite <-H6 in H11. apply MKT4 in H11 as []; auto.
apply AxiomII in H12 as []. contradiction.
apply MKT4'; split. rewrite <-H6. apply MKT4; auto.
apply AxiomII; split; eauto. intro. apply (@ MKT16 z).
rewrite <-H7. apply MKT4'; auto. }
rewrite H11 in H10; auto.
Qed.
Lemma Finite_Φ : Finite Φ.
Proof.
destruct MKT135. apply MKT164,MKT156 in H as [].
unfold Finite. rewrite H1; auto.
Qed.
(* Fσ是滤子, 但不是超滤, 并且Fσ中的集都是无限的(否则不属于Fσ) *)
Corollary Fσ_is_just_Filter : ∀ A, ~ Finite A -> Ensemble A
-> Filter (Fσ A) A /\ ~ ultraFilter (Fσ A) A
/\ (∀ a, a ⊂ A -> Finite a -> a ∉ (Fσ A)).
Proof.
intros. assert (Filter (Fσ A) A).
{ repeat split; intros.
- unfold Included; intros. apply AxiomII; split; eauto.
apply AxiomII in H1 as [H1[]]; auto.
- intro. apply AxiomII in H1 as [H1[]].
assert (A ~ Φ = A).
{ apply AxiomI; split; intros. apply MKT4' in H4 as []; auto.
apply MKT4'; split; auto. apply AxiomII; split. eauto.
intro. pose proof (@ MKT16 z); auto. }
rewrite H4 in H3; auto.
- apply AxiomII; repeat split; auto.
assert (A ~ A = Φ).
{ apply AxiomI; split; intros; elim (@ MKT16 z); auto.
apply MKT4' in H1 as []. apply AxiomII in H2 as [].
contradiction. }
rewrite H1. apply Finite_Φ.
- apply AxiomII in H1 as [H1[]], H2 as [H2[]].
assert ((a ∩ b) ⊂ a).
{ unfold Included; intros. apply MKT4' in H7; tauto. }
apply AxiomII; repeat split. apply (MKT33 a); auto.
unfold Included; intros; auto.
assert ((A ~ (a ∩ b)) = ((A ~ a) ∪ (A ~ b))).
{ apply AxiomI; split; intros.
apply MKT4' in H8 as []. apply AxiomII in H9 as [].
apply MKT4. apply NNPP; intro. apply notandor in H11 as [].
elim H10. apply MKT4'. apply NNPP; intro.
apply notandor in H13 as []; [elim H11|elim H12];
apply AxiomII; repeat split; auto; apply AxiomII; auto.
apply MKT4'; split. apply MKT4 in H8 as []; apply MKT4' in H8; tauto.
apply AxiomII; split; eauto. intro. apply MKT4' in H9 as [].
apply MKT4 in H8 as []; apply MKT4' in H8 as [];
apply AxiomII in H11 as []; auto. }
rewrite H8. apply MKT168; auto.
- apply AxiomII; repeat split; auto. apply (MKT33 A); auto.
apply AxiomII in H3 as [H3[]]. apply (@ finsub ((A ~ a))); auto.
unfold Included; intros. apply MKT4' in H6 as [].
apply AxiomII in H7 as []. apply MKT4'; split; auto.
apply AxiomII; split; auto. intro. apply H1 in H9; auto. }
split; auto. split. intro.
- destruct H2 as [_]. destruct H1 as [H1[H3[H4[]]]].
New H0. apply Inf_P8 in H7 as [A1[A2[H7[H8[H9[H10[]]]]]]]; auto.
assert (A1 ⊂ A).
{ rewrite <-H11. unfold Included; intros. apply MKT4; auto. }
New H13. apply H2 in H14 as []; apply AxiomII in H14 as [H14[]].
assert (A ~ A1 = A2).
{ apply AxiomI; split; intros. apply MKT4' in H17 as [].
rewrite <-H11 in H17. apply MKT4 in H17 as []; auto.
apply AxiomII in H18 as []. contradiction.
apply MKT4'; split. rewrite <-H11. apply MKT4; auto.
apply AxiomII; split; eauto. intro. elim (@ MKT16 z).
rewrite <-H12. apply MKT4'; auto. }
rewrite H17 in H16; auto.
assert (A ~ (A ~ A1) = A1).
{ apply AxiomI; split; intros. apply MKT4' in H17 as [].
apply AxiomII in H18 as []. apply NNPP; intro. elim H19.
apply MKT4'; split; auto. apply AxiomII; auto.
apply MKT4'; split. rewrite <-H11. apply MKT4; auto.
apply AxiomII; split; eauto. intro.
apply MKT4' in H18 as []. apply AxiomII in H19 as []; auto. }
rewrite H17 in H16. auto.
- intros. intro. apply AxiomII in H4 as [H4[]].
assert ((A ~ a) ∪ a = A).
{ apply AxiomI; split; intros. apply MKT4 in H7 as []; auto.
apply MKT4' in H7 as []; auto. apply MKT4.
TF (z ∈ a). auto. left. apply MKT4'; split; auto.
apply AxiomII; split; eauto. }
elim H. rewrite <-H7. apply MKT168; auto.
Qed.
(* 在超滤的前提下, 自由超滤 等价于 包含了Fσ *)
Proposition Fσ_and_free_ultrafilter : ∀ F A, Ensemble A -> ~ Finite A
-> ultraFilter F A -> free_ultraFilter F A <-> (Fσ A) ⊂ F.
Proof.
split; intros.
- destruct H2 as [[[H2[H3[H4[]]]]]]. unfold Included; intros.
apply AxiomII in H9 as [H9[]]. apply H7 in H10 as []; auto.
apply H8 in H11. contradiction. unfold Included; intros.
apply MKT4' in H12; tauto.
- split; auto. intros. intro.
assert ((A ~ a) ∈ (Fσ A)).
{ apply AxiomII. assert ((A ~ a) ⊂ A).
{ unfold Included; intros. apply MKT4' in H6; tauto. }
repeat split; auto. apply (MKT33 A); auto.
assert (A ~ (A ~ a) = a).
{ apply AxiomI; split; intros. apply MKT4' in H7 as [].
apply AxiomII in H8 as []. apply NNPP; intro. elim H9.
apply MKT4'; split; auto. apply AxiomII; split; auto.
apply MKT4'; split; auto. apply AxiomII; split; eauto.
intro. apply MKT4' in H8 as []. apply AxiomII in H9 as []; auto. }
rewrite H7; auto. }
apply H2 in H6. destruct H1 as [[H1[H7[H8[]]]]].
assert ((a ∩ (A ~ a)) ∈ F). { apply H9; auto. }
replace (a ∩ (A ~ a)) with Φ in H12; auto.
apply AxiomI; split; intros. elim (@ MKT16 z); auto.
apply MKT4' in H13 as []. apply MKT4' in H14 as [].
apply AxiomII in H15 as []. contradiction.
Qed.
(* 定义 A上的主超滤Fa
只有a∈A时,Fa才有意义,否则Fa为空.
至此, 找到了确切能够构造出来的一类超滤: 主超滤. *)
Definition F A a := \{ λ u, u ⊂ A /\ a ∈ u \}.
Corollary Fn_Corollary1 : ∀ A a, F A a = Φ <-> a ∉ A.
Proof.
split; intros.
- intro. assert ([a] ∈ (F A a)).
{ apply AxiomII; repeat split. eauto. unfold Included; intros.
apply MKT41 in H1; eauto. rewrite H1; auto.
apply MKT41; eauto. }
apply (@ MKT16 [a]). rewrite <-H; auto.
- apply AxiomI; split; intros; elim (@ MKT16 z); auto.
apply AxiomII in H0 as [H0[]]. apply H1 in H2. elim H; auto.
Qed.
Corollary Fn_Corollary2_a : ∀ A a, ultraFilter (F A a) A -> a ∈ A.
Proof.
intros. apply NNPP; intro. apply Fn_Corollary1 in H0. rewrite H0 in H.
destruct H as [[H[H1[]]]]. elim (@ MKT16 A); auto.
Qed.
Corollary Fn_Corollary2_b : ∀ A a, Ensemble A -> a ∈ A
-> ultraFilter (F A a) A.
Proof.
repeat split; intros.
- unfold Included; intros. apply AxiomII in H1 as [H1[]].
apply AxiomII; split; auto.
- intro. apply AxiomII in H1 as [H1[]]. apply (@ MKT16 a); auto.
- apply AxiomII; repeat split; auto.
- apply AxiomII in H1 as [H1[]], H2 as [H2[]].
apply AxiomII. assert ((a0 ∩ b) ⊂ A).
{ unfold Included; intros. apply MKT4' in H7 as []; auto. }
repeat split; auto. apply (MKT33 A); auto. apply MKT4'; auto.
- apply AxiomII. apply AxiomII in H3 as [H3[]].
repeat split; auto. apply (MKT33 A); auto.
- TF (a ∈ a0).
+ left. apply AxiomII; split; auto. apply (MKT33 A); auto.
+ right. assert ((A ~ a0) ⊂ A).
{ unfold Included; intros. apply MKT4' in H3; tauto. }
apply AxiomII; repeat split; auto. apply (MKT33 A); auto.
Qed.
(* a∈A时, Fa 称为A上的主超滤 *)
(* 关于主超滤的两个例子 *)
Example Example2 : ∀ A u v, u ∈ A -> v ∈ A
-> u <> v <-> F A u <> F A v.
Proof.
intros. split; intros; intro.
- assert ([u] ∈ (F A u)).
{ apply AxiomII. repeat split. eauto. unfold Included; intros.
apply MKT41 in H3; eauto. rewrite H3; auto. apply MKT41; eauto. }
assert ([u] ∉ (F A v)).
{ intro. apply AxiomII in H4 as [H4[]].
apply MKT41 in H6; eauto. }
rewrite H2 in H3; auto.
- elim H1. apply AxiomI; split; intros;
apply AxiomII in H3 as [H3[]]; apply AxiomII;
repeat split; auto; [rewrite <-H2|rewrite H2]; auto.
Qed.
Example Example3_a : ∀ A A0 a, A0 ⊂ A -> a ∈ A -> A0 ∈ (F A a) -> a ∈ A0.
Proof.
intros. apply AxiomII in H1 as [H1[]]; auto.
Qed.
Example Example3_b : ∀ A A0 a, Ensemble A0 -> A0 ⊂ A -> a ∈ A0
-> A0 ∈ (F A a).
Proof.
intros. apply AxiomII; auto.
Qed.
(* 定理2a 每个主超滤 都是 非自由的超滤 *)
Theorem FT2_a : ∀ A a, Ensemble A -> a ∈ A
-> ultraFilter (F A a) A /\ ~ free_ultraFilter (F A a) A.
Proof.
intros. split. apply Fn_Corollary2_b; auto.
intro. destruct H1. assert ([a] ⊂ A).
{ unfold Included; intros.
apply MKT41 in H3; eauto. rewrite H3; auto. }
assert (Ensemble a); eauto. New H4. apply finsin in H4.
New H3. apply H2 in H6; auto. apply H6,AxiomII. repeat split; auto.
Qed.
Lemma FT2_b_Lemma1 : ∀ x y, ∩(x ∪ y) = (∩x) ∩ (∩y).
Proof.
intros. apply AxiomI; split; intros.
- apply AxiomII in H as []. apply MKT4'; split;
apply AxiomII; split; auto; intros; apply H0,MKT4; auto.
- apply MKT4' in H as []. apply AxiomII; split; eauto; intros.
apply AxiomII in H as [], H0 as [].
apply MKT4 in H1 as []; auto.
Qed.
Lemma FT2_b_Lemma2 : ∀ F0 A B, Filter F0 A -> Finite B -> B <> Φ
-> (∀ b, b ∈ B -> b ∈ F0) -> ∩B ∈ F0.
Proof.
intros. generalize dependent B.
set (p := fun m => (∀ B, P[B] = m -> B <> Φ
-> (∀ b, b ∈ B -> b ∈ F0) -> ∩B ∈ F0)).
assert (∀ n, n ∈ ω -> p n).
{ apply Mathematical_Induction; unfold p; intros.
- apply carE in H0. contradiction.
- New H2. apply Inf_P7_Lemma in H5
as [B1[b[H5[H6[H7[]]]]]]; auto.
New H6. apply MKT44 in H10 as [H10 _].
rewrite H9,FT2_b_Lemma1,H10.
assert (b ∈ F0).
{ apply H4. rewrite H9. apply MKT4; right.
apply MKT41; auto. }
TF (B1 = Φ). rewrite H12,MKT24,MKT6',MKT20'; auto.
destruct H as [H[H13[H14[]]]]. apply H15; auto.
apply H1; auto. intros. apply H4. rewrite H9.
apply MKT4; auto. }
intros. apply (H0 (P[B])); auto.
Qed.
(* 定理2b 每个非自由的超滤 也是 某个主超滤 *)
Theorem FT2_b : ∀ F0 A, ultraFilter F0 A
-> ~ free_ultraFilter F0 A -> (∃ a, a ∈ A /\ F0 = F A a).
Proof.
intros. assert (∃ A1, A1 ∈ F0 /\ Finite A1) as [A1[]].
{ apply NNPP; intro. elim H0. split;
auto. intros. intro. elim H1. eauto. }
assert ((A ~ A1) ∉ F0).
{ destruct H as [[H[H3[H4[]]]]]. intro.
apply (H5 A1) in H8; auto. apply H3.
replace (A1 ∩ (A ~ A1)) with Φ in H8; auto.
apply AxiomI; split; intros. elim (@ MKT16 z); auto.
apply MKT4' in H9 as []. apply MKT4' in H10 as [].
apply AxiomII in H11 as []. contradiction. }
assert (Ensemble A) as HA.
{ apply (Filter_is_Set_Co1 F0 A). destruct H; auto. }
assert (A ~ A1 = ∩(\{ λ v, ∃ a, a ∈ A1 /\ v = A ~ [a] \})).
{ apply AxiomI; split; intros.
- apply AxiomII; split. eauto. intros.
apply AxiomII in H5 as [H5[a[]]].
assert ((A ~ A1) ⊂ (A ~ [a])).
{ unfold Included; intros. apply MKT4' in H8 as [].
apply AxiomII in H9 as []. apply MKT4'; split; auto.
apply AxiomII; split; auto. intro. apply MKT41 in H11; eauto.
rewrite <-H11 in H6; auto. }
apply H8 in H4. rewrite H7; auto.
- apply AxiomII in H4 as []. destruct (classic (A1 = Φ)).
rewrite H6 in H1. destruct H as [[H[H7[H8[]]]]].
contradiction. apply NEexE in H6 as [a].
assert ((A ~ [a]) ∈ \{ λ u, ∃ a, a ∈ A1 /\ u = A ~ [a] \}).
{ apply AxiomII; split; eauto. apply (MKT33 A); eauto. }
apply H5 in H7. destruct H as [[]]. apply H in H1.
assert (z ∈ A). { apply MKT4' in H7; tauto. }
apply AxiomII in H1 as []. apply NNPP; intro.
assert (z ∈ A1).
{ apply NNPP; intro. elim H12.
apply MKT4'; split; auto. apply AxiomII; auto. }
assert ((A ~ [z]) ∈ \{ λ u, ∃ a, a ∈ A1 /\ u = A ~ [a] \}).
{ apply AxiomII; split; eauto. apply (MKT33 A); eauto. }
apply H5 in H14. apply MKT4' in H14 as [].
apply AxiomII in H15 as []. elim H16. apply MKT41; auto. }
assert (∃ u, u ∈ \{ λ v, ∃ a, a ∈ A1 /\ v = A ~ [a] \}
/\ u ∉ F0) as [u[]].
{ apply NNPP; intro.
assert (∀ u, u ∈ \{ λ v, ∃ a, a ∈ A1 /\ v = A ~ [a] \}
-> u ∈ F0).
{ intros. apply AxiomII in H6 as [H6[a[]]]. apply NNPP; intro.
elim H5. exists u. split; auto. apply AxiomII; split; eauto. }
apply H3. rewrite H4. apply (FT2_b_Lemma2 _ A); auto.
destruct H; auto.
- set (f := \{\ λ u v, u ∈ A1 /\ v = A ~ [u] \}\).
assert (Function f /\ dom(f) = A1
/\ ran(f) = \{ λ v, ∃ a, a ∈ A1 /\ v = A ~ [a] \}) as [H7[]].
{ repeat split; try (apply AxiomI; split); unfold Relation; intros.
- apply AxiomII in H7 as [_[x[y[]]]]; eauto.
- apply AxiomII' in H7 as [_[]], H8 as [_[]].
rewrite H9,H10; auto.
- apply AxiomII in H7 as [_[]].
apply AxiomII' in H7; tauto.
- apply AxiomII; split. eauto. exists (A ~ [z]).
apply AxiomII'; split; auto. apply MKT49a; eauto.
apply (MKT33 A); eauto.
- apply AxiomII in H7 as [H7[]]. apply AxiomII; split; auto.
apply AxiomII' in H8 as [H8[]]; eauto.
- apply AxiomII in H7 as [H7[x[]]].
apply AxiomII; split; auto. exists x.
apply AxiomII'; split; auto. apply MKT49a; eauto. }
assert (Ensemble f). { apply MKT75; [ |rewrite H8]; eauto. }
apply MKT160 in H10; auto. rewrite H8 in H10. rewrite <-H9.
destruct H10. New MKT138. apply AxiomII in H11 as [_[]].
apply H12 in H2. apply H2 in H10; auto.
unfold Finite. rewrite H10; auto.
- assert (A1 <> Φ).
{ intro. rewrite H7 in H1. destruct H as [[_[]]]; auto. }
apply NEexE in H7 as []. apply NEexE. exists (A ~ [x]).
apply AxiomII; split; eauto. apply (MKT33 A); eauto. }
apply AxiomII in H5 as [H5[x[]]]. rewrite H8 in *. destruct H.
assert ([x] ⊂ A).
{ destruct H. unfold Included; intros. apply MKT41 in H11; eauto.
rewrite H11. apply H,AxiomII in H1 as []; auto. }
apply H9 in H10 as []; [ |contradiction]. exists x.
assert (x ∈ A).
{ destruct H. apply H,AxiomII in H10 as [].
apply H12. apply MKT41; eauto. }
split; auto. destruct H as [H[H12[H13[]]]].
apply AxiomI; split; intros. apply AxiomII; split; eauto.
split. unfold Included; intros. apply H,AxiomII in H16 as []; auto.
apply NNPP; intro. apply (H14 z) in H10; auto.
replace (z ∩ [x]) with Φ in H10; auto.
apply AxiomI; split; intros; elim (@ MKT16 z0); auto.
apply MKT4' in H18 as []. apply MKT41 in H19; eauto.
rewrite H19 in H18. contradiction. apply AxiomII in H16 as [H16[]].
apply (H15 _ z) in H10; auto. unfold Included; intros.
apply MKT41 in H19; eauto. rewrite H19; auto.
Qed.