forked from wbbhcb/stock_market
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRefreshData.py
103 lines (89 loc) · 3.85 KB
/
RefreshData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import tushare as ts
import pandas as pd
import os
import time
"""
获取历史数据
"""
mytoken = '10a361cde441a9e7aea6e98441a8bea0fbb2c82ac8298899ee22fbfd'
ts.set_token(mytoken)
ts.set_token(mytoken)
save_path = 'F:\stock'
pro = ts.pro_api()
def RefreshNoramlData():
#获取基础信息数据,包括股票代码、名称、上市日期、退市日期等
pool = pro.stock_basic(exchange='',
list_status='L',
adj='qfq',
fields='ts_code,symbol,name,area,industry,fullname,list_date, market,exchange,is_hs')
#print(pool.head())
# 因为穷没开通创业板和科创板权限,这里只考虑主板和中心板
pool = pool[pool['market'].isin(['主板', '中小板'])].reset_index()
pool.to_csv(os.path.join(save_path, 'company_info.csv'), index=False, encoding='ANSI')
# print('获得上市股票总数:', len(pool)-1)
k = 1
for i in pool.ts_code:
print('正在获取第%d家,股票代码%s.' % (k, i))
path = os.path.join(save_path, 'OldData', i + '_NormalData.csv')
k += 1
df = pro.daily(ts_code=i,
start_date=startdate,
end_date=enddate,
fields='ts_code, trade_date, open, high, low, close, pre_close, change, pct_chg, vol, amount')
df = df.sort_values('trade_date', ascending=True)
if len(df) == 0:
continue
if not os.path.exists(path):
df.to_csv(path, index=False)
else:
f = open(path, 'a+', encoding='utf-8')
col = list(df.columns)
for j in range(len(df)):
write_info = ''
for j2 in range(len(col)):
write_info = write_info + str(df[col[j2]][j])
if j2 != len(col) - 1:
write_info = write_info + ','
f.write(write_info + '\n')
f.close()
def RefreshIndexData():
# 上交所指数信息
df = pro.index_basic(market='SSE')
df.to_csv(os.path.join(save_path, 'SSE.csv'), index=False, encoding='ANSI')
# 深交所指数信息
df = pro.index_basic(market='SZSE')
df.to_csv(os.path.join(save_path, 'SZSE.csv'), index=False, encoding='ANSI')
# 获取指数历史信息
# 这里获取几个重要的指数 【上证综指,上证50,上证A指,深证成指,深证300,中小300,创业300,中小板综,创业板综】
index = ['000001.SH', '000016.SH', '000002.SH', '399001.SZ', '399007.SZ', '399008.SZ', '399012.SZ', '399101.SZ',
'399102.SZ']
for i in index:
path = os.path.join(save_path, 'OldData', i + '_NormalData.csv')
df = pro.index_daily(ts_code=i,
start_date=startdate,
end_date=enddate,
fields='ts_code, trade_date, open, high, low, close, pre_close, change, pct_chg, '
'vol, amount')
df = df.sort_values('trade_date', ascending=True)
if len(df) == 0:
continue
if not os.path.exists(path):
df.to_csv(path, index=False)
else:
f = open(path, 'a+', encoding='utf-8')
col = list(df.columns)
for j in range(len(df)):
write_info = ''
for j2 in range(len(col)):
write_info = write_info + str(df[col[j2]][j])
if j2 != len(col) - 1:
write_info = write_info + ','
f.write(write_info + '\n')
f.close()
if __name__ == '__main__':
#设置起始日期
startdate = '20191227'
enddate = '20191228'
#主程序
RefreshNoramlData()
RefreshIndexData()