forked from nadvornix/calculus-made-easy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
6.html
597 lines (477 loc) · 18.1 KB
/
6.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
<!DOCTYPE html>
<meta charset="utf-8">
<title>Sums, Differences, Products and Quotients | Calculus Made Easy</title>
<link rel="stylesheet" href="screen.css">
<style>
body{counter-reset:h1 6}
</style>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}});
</script>
<script type="text/javascript"
src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
<h1><br>Sums, Differences, Products and Quotients</h1>
<p class="a rotatedFloralHeartBullet">
<p>We have learned how to differentiate simple algebraical
functions such as $x^2 + c$ or $ax^4$, and we have
now to consider how to tackle the <em>sum</em><a name="sumdiffer"/> of two or
more functions.
<p>For instance, let
\[
y = (x^2+c) + (ax^4+b);
\]
what will its $\dfrac{dy}{dx}$ be? How are we to go to work
on this new job?
<p>The answer to this question is quite simple: just
differentiate them, one after the other, thus:
\[
\dfrac{dy}{dx} = 2x + 4ax^3. (Ans.)
\]
<p>If you have any doubt whether this is right, try
a more general case, working it by first principles.
And this is the way.
<p>Let $y = u+v$, where $u$ is any function of $x$, and $v$
any other function of $x$. Then, letting $x$ increase
to $x+dx$, $y$ will increase to $y+dy$; and $u$ will
increase to $u+du$; and $v$ to $v+dv$.
<p>And we shall have:
<p>$ y+dy = u+du + v+dv.$
<p>Subtracting the original $y = u+v$, we get
<p>$dy = du+dv, $
<p>and dividing through by $dx$, we get:
<p>$\dfrac{dy}{dx} = \dfrac{du}{dx} + \dfrac{dv}{dx}.$
<p>This justifies the procedure. You differentiate each
function separately and add the results. So if now
we take the example of the preceding paragraph, and
put in the values of the two functions, we shall have,
using the notation shown (<a href="3.html#note">chapter III</a>),
\begin{alignat*}{2}
\frac{dy}{dx}
& = \frac{d(x^2+c)}{dx} &&+ \frac{d(ax^4+b)}{dx} \\
& = 2x &&+ 4ax^3,
\end{alignat*}
exactly as before.
<p>If there were three functions of $x$, which we may
call $u$, $v$ and $w$, so that
\begin{align*}
y &= u+v+w; \\
\text{then}\;
\frac{dy}{dx} &= \frac{du}{dx} + \frac{dv}{dx} + \frac{dw}{dx}.
\end{align*}
<p>As for <em>subtraction</em>, it follows at once; for if the
function $v$ had itself had a negative sign, its
differential coefficient would also be negative; so
that by differentiating
\begin{align*}
y &= u-v, \\
\text{ we should get}\;
\frac{dy}{dx} &= \frac{du}{dx} - \frac{dv}{dx}.
\end{align*}
<p>But when we come to do with <em>Products</em>, the thing
is not quite so simple.
<p>Suppose we were asked to differentiate the expression
\[
y = (x^2+c) × (ax^4+b),
\]
what are we to do? The result will certainly <em>not</em>
be $2x × 4ax^3$; for it is easy to see that neither $c × ax^4$,
nor $x^2 × b$, would have been taken into that product.
<p>Now there are two ways in which we may go
to work.
<p><em>First way.</em> Do the multiplying first, and, having
worked it out, then differentiate.
<p>Accordingly, we multiply together $x^2 + c$ and $ax^4 + b$.
<p>This gives $ax^6 + acx^4 + bx^2 + bc$.
<p>Now differentiate, and we get:
\[
\dfrac{dy}{dx} = 6ax^5 + 4acx^3 + 2bx.
\]
<p><em>Second way.</em> Go back to first principles, and
consider the equation
\[
y = u × v;
\]
where $u$ is one function of $x$, and $v$ is any other
function of $x$. Then, if $x$ grows to be $x+dx$; and $y$
to $y+dy$; and $u$ becomes $u+du$, and $v$ becomes $v+dv$,
we shall have:
\begin{align*}
y + dy &= (u + du) × (v + dv) \\
&= u · v + u · dv + v · du + du · dv.
\end{align*}
<p>Now $du · dv$ is a small quantity of the second order
of smallness, and therefore in the limit may be
discarded, leaving
\[
y + dy = u · v + u · dv + v · du.
\]
<p>Then, subtracting the original $y = u· v$, we have left
\[
dy = u · dv + v · du;
\]
and, dividing through by $dx$, we get the result:
\[
\dfrac{dy}{dx} = u\, \dfrac{dv}{dx} + v\, \dfrac{du}{dx}.
\]
<p>This shows that our instructions will be as follows:<a name="differprod"/>
<em>To differentiate the product of two functions, multiply
each function by the differential coefficient of the
other, and add together the two products so obtained.</em>
<p>You should note that this process amounts to
the following: Treat $u$ as constant while you
differentiate $v$; then treat $v$ as constant while you
differentiate $u$; and the whole differential coefficient $\dfrac{dy}{dx}$
will be the sum of these two treatments.
<p>Now, having found this rule, apply it to the
concrete example which was considered above.
<p>We want to differentiate the product
\[
(x^2 + c) × (ax^4 + b).
\]
<p>Call $(x^2 + c) = u$; and $(ax^4 + b) = v$.
<p>Then, by the general rule just established, we
may write:
\begin{alignat*}{2}
\dfrac{dy}{dx}
&= (x^2 + c)\, \frac{d(ax^4 + b)}{dx} &&+ (ax^4 + b)\, \frac{d(x^2 + c)}{dx} \\
&= (x^2 + c)\, 4ax^3 &&+ (ax^4 + b)\, 2x \\
&= 4ax^5 + 4acx^3 &&+ 2ax^5 + 2bx, \\
\dfrac{dy}{dx}
&= 6ax^5 + 4acx^3 &&+ 2bx,
\end{alignat*}
exactly as before.
<p>Lastly, we have to differentiate <em>quotients</em>.
<p>Think of this example, $y = \dfrac{bx^5 + c}{x^2 + a}$. In such a case
it is no use to try to work out the division beforehand,
because $x^2 + a$ will not divide into $bx^5 + c$, neither
have they any common factor. So there is nothing
for it but to go back to first principles, and find a
rule.
So we will put
\[
y = \frac{u}{v};
\]
where $u$ and $v$ are two different functions of the
independent variable $x$. Then, when $x$ becomes
$x + dx$, $y$ will become $y + dy$; and $u$ will become
$u + du$; and $v$ will become $v + dv$. So then
\[
y + dy = \dfrac{u + du}{v + dv}.
\]
<p>Now perform the algebraic division, thus:
<a name="figure666a">
<img src="33283-t/images/666a.pdf.png-1.png">
<p>As both these remainders are small quantities of
the second order, they may be neglected, and the
division may stop here, since any further remainders
would be of still smaller magnitudes.
<p>So we have got:
\begin{align*}
y + dy &= \dfrac{u}{v} + \dfrac{du}{v} - \dfrac{u· dv}{v^2}; \\
\end{align*}
which may be written
\begin{align*}
&= \dfrac{u}{v} + \dfrac{v· du - u· dv}{v^2}. \\
\end{align*}
Now subtract the original $y = \dfrac{u}{v}$, and we have left:
\begin{align*}
dy &= \dfrac{v· du - u· dv}{v^2}; \\
\text{whence}\;
\dfrac{dy}{dx}
&= \dfrac{v\, \dfrac{du}{dx} - u\, \dfrac{dv}{dx}}{v^2}.
\end{align*}
<p>This gives us our instructions as to <em>how to differentiate
a quotient of two functions. Multiply the
divisor function by the differential coefficient of
the dividend function; then multiply the dividend
function by the differential coefficient of the divisor
function; and subtract. Lastly divide by the square
of the divisor function</em>.
<p>
Going back to our example $y = \dfrac{bx^5 + c}{x^2 + a}$,
\begin{align*}
\text{ write}\;
bx^5 + c &= u; \\
\text{and}\;
x^2 + a &= v.
\end{align*}
<p>Then
\begin{align*}
\frac{dy}{dx}
&= \frac{(x^2 + a)\, \dfrac{d(bx^5 + c)}{dx} - (bx^5 + c)\, \dfrac{d(x^2 + a)}{dx}}{(x^2 + a)^2} \\
&= \frac{(x^2 + a)(5bx^4) - (bx^5 + c)(2x)}{(x^2 + a)^2}, \\
\frac{dy}{dx}
&= \frac{3bx^6 + 5abx^4 - 2cx}{(x^2 + a)^2}.\quad\text{(Answer.)}
\end{align*}
<p>The working out of quotients is often tedious, but
there is nothing difficult about it.
<p>Some further examples fully worked out are given
hereafter.<a name="examples3"/>
<p>(1) Differentiate $y = \dfrac{a}{b^2} x^3 - \dfrac{a^2}{b} x + \dfrac{a^2}{b^2}$.
<p>Being a constant, $\dfrac{a^2}{b^2}$ vanishes,
and we have
\[
\frac{dy}{dx} = \frac{a}{b^2} × 3 × x^{3-1} - \frac{a^2}{b} × 1 × x^{1-1}.
\]
<p>But $x^{1-1} = x^0 = 1$; so we get:
\[
\frac{dy}{dx} = \frac{3a}{b^2} x^2 - \frac{a^2}{b}.
\]
<p>(2) Differentiate $y = 2a\sqrt{bx^3} - \dfrac{3b \sqrt[3]{a}}{x} - 2\sqrt{ab}$.
<p>Putting $x$ in the index form, we get
\[
y = 2a\sqrt{b} x^{\frac{3}{2}} - 3b \sqrt[3]{a} x^{-1} - 2\sqrt{ab}.
\]
<p>Now
\[
\frac{dy}{dx} = 2a\sqrt{b} × \tfrac{3}{2} × x^{\frac{3}{2}-1} - 3b\sqrt[3]{a} × (-1) × x^{-1-1}; \\
\text{or, }\;
\frac{dy}{dx} = 3a\sqrt{bx} + \frac{3b\sqrt[3]{a}}{x^2}.
\]
<p>(3) Differentiate $z = 1.8 \sqrt[3]{\dfrac{1}{\theta^2}} - \dfrac{4.4}{\sqrt[5]{\theta}} - 27°$.
<p>This may be written: $z= 1.8\, \theta^{-\frac{2}{3}} - 4.4\, \theta^{-\frac{1}{5}} - 27°$.
<p>The $27°$ vanishes, and we have
\[
\frac{dz}{d\theta}
= 1.8 × -\tfrac{2}{3} × \theta^{-\frac{2}{3}-1}
- 4.4 × \left(-\tfrac{1}{5}\right)\theta^{-\frac{1}{5}-1}; \\
\text{or}\;,
\frac{dz}{d\theta}
= -1.2\, \theta^{-\frac{5}{3}} + 0.88\, \theta^{-\frac{6}{5}}; \\
\text{or,}\;
\frac{dz}{d\theta} = \frac{0.88}{\sqrt[5]{\theta^6}}
- \frac{1.2}{\sqrt[3]{\theta^5}}.
\]
<p>(4) Differentiate $v = (3t^2 - 1.2 t + 1)^3$.
<p>A direct way of doing this will be explained later
(see <a href="9.html#dodge">here</a>); but we can nevertheless manage it now
without any difficulty.
<p>Developing the cube, we get
\[
v = 27t^6 - 32.4t^5 + 39.96t^4 - 23.328t^3 + 13.32t^2 - 3.6t + 1;
\]
hence
\[
\frac{dv}{dt} = 162t^5 - 162t^4 + 159.84t^3 - 69.984t^2 + 26.64t - 3.6.
\]
<p>(5) Differentiate $y = (2x - 3)(x + 1)^2$.
\begin{alignat*}{2}
\frac{dy}{dx}
&= (2x - 3)\, \frac{d\bigl[(x + 1)(x + 1)\bigr]}{dx}
&&+ (x + 1)^2\, \frac{d(2x - 3)}{dx} \\
&= (2x - 3) \left[(x + 1)\, \frac{d(x + 1)}{dx}\right.
&&+ \left.(x + 1)\, \frac{d(x + 1)}{dx}\right] \\
& &&+ (x + 1)^2\, \frac{d(2x - 3)}{dx} \\
&= 2(x + 1)\bigl[(2x - 3) + (x + 1)\bigr] &&= 2(x + 1)(3x - 2)
\end{alignat*}
or, more simply, multiply out and then differentiate.
<p>(6) Differentiate $y = 0.5 x^3(x-3)$.
\begin{align*}
\frac{dy}{dx}
&= 0.5\left[x^3 \frac{d(x-3)}{dx} + (x-3) \frac{d(x^3)}{dx}\right] \\
&= 0.5\left[x^3 + (x-3) × 3x^2\right] = 2x^3 - 4.5x^2.
\end{align*}
<p>Same remarks as for preceding example.
<p>(7) Differentiate $w = \left(\theta + \dfrac{1}{\theta}\right)
\left(\sqrt{\theta} + \dfrac{1}{\sqrt{\theta}}\right)$.
<p>This may be written
\begin{gather*}
w = (\theta + \theta^{-1})(\theta^{\frac{1}{2}} + \theta^{-\frac{1}{2}}). \\
\begin{aligned}
\frac{dw}{d\theta}
&= (\theta + \theta^{-1})
\frac{d(\theta^{\frac{1}{2}} + \theta^{-\frac{1}{2}})}{d\theta}
+ (\theta^{\frac{1}{2}} + \theta^{-\frac{1}{2}})
\frac{d(\theta+\theta^{-1})}{d\theta} \\
&= (\theta + \theta^{-1})(\tfrac{1}{2}\theta^{-\frac{1}{2}}
- \tfrac{1}{2}\theta^{-\frac{3}{2}})
+ (\theta^{\frac{1}{2}} + \theta^{-\frac{1}{2}})(1 - \theta^{-2}) \\
&= \tfrac{1}{2}(\theta^{ \frac{1}{2}} + \theta^{-\frac{3}{2}}
- \theta^{-\frac{1}{2}} - \theta^{-\frac{5}{2}})
+ (\theta^{ \frac{1}{2}} + \theta^{-\frac{1}{2}}
- \theta^{-\frac{3}{2}} - \theta^{-\frac{5}{2}}) \\
&= \tfrac{3}{2} \left(\sqrt{\theta} - \frac{1}{\sqrt{\theta^5}}\right)
+ \tfrac{1}{2} \left(\frac{1}{\sqrt{\theta}} - \frac{1}{\sqrt{\theta^3}}\right).
\end{aligned}
\end{gather*}
<p>This, again, could be obtained more simply by
multiplying the two factors first, and differentiating
afterwards. This is not, however, always possible;
see, for instance, <a href="16.html#example1">here</a>, example 8, in which the
rule for differentiating a product <em>must</em> be used.
<p>(8) Differentiate $y =\dfrac{a}{1 + a\sqrt{x} + a^2x}$.
\begin{align*}
\frac{dy}{dx}
&= \frac{(1 + ax^{\frac{1}{2}} + a^2x) × 0 - a\dfrac{d(1 + ax^{\frac{1}{2}} + a^2x)}{dx}}
{(1 + a\sqrt{x} + a^2x)^2} \\
&= - \frac{a(\frac{1}{2}ax^{-\frac{1}{2}} + a^2)}
{(1 + ax^{\frac{1}{2}} + a^2x)^2}.
\end{align*}
<p>(9) Differentiate $y = \dfrac{x^2}{x^2 + 1}$.
\[
\dfrac{dy}{dx} = \dfrac{(x^2 + 1)\, 2x - x^2 × 2x}{(x^2 + 1)^2} = \dfrac{2x}{(x^2 + 1)^2}.
\]
<p>(10) Differentiate $y = \dfrac{a + \sqrt{x}}{a - \sqrt{x}}$.
<p>In the indexed form, $y = \dfrac{a + x^{\frac{1}{2}}}{a - x^{\frac{1}{2}}}$.
\[
\frac{dy}{dx}
= \frac{(a - x^{\frac{1}{2}})( \tfrac{1}{2} x^{-\frac{1}{2}})
- (a + x^{\frac{1}{2}})(-\tfrac{1}{2} x^{-\frac{1}{2}})}
{(a - x^{\frac{1}{2}})^2}
= \frac{ a - x^{\frac{1}{2}}
+ a + x^{\frac{1}{2}}}
{2(a - x^{\frac{1}{2}})^2\, x^{\frac{1}{2}}}; \\
\text{hence}\;
\frac{dy}{dx} = \frac{a}{(a - \sqrt{x})^2\, \sqrt{x}}.
\]
<p>(11) Differentiate
<p>\begin{align*}
\theta &= \frac{1 - a \sqrt[3]{t^2}}{1 + a \sqrt[2]{t^3}}. \\
\text{Now}\;
\theta &= \frac{1 - at^{\frac{2}{3}}}{1 + at^{\frac{3}{2}}}.
\end{align*}
\begin{align*}
\frac{d\theta}{dt}
&= \frac{(1 + at^{\frac{3}{2}}) (-\tfrac{2}{3} at^{-\frac{1}{3}})
- (1 - at^{\frac{2}{3}}) × \tfrac{3}{2} at^{\frac{1}{2}}}
{(1 + at^{\frac{3}{2}})^2} \\
&= \frac{5a^2 \sqrt[6]{t^7} - \dfrac{4a}{\sqrt[3]{t}} - 9a \sqrt[2]{t}}
{6(1 + a \sqrt[2]{t^3})^2}.
\end{align*}
<p>(12) A reservoir of square cross-section has sides
sloping at an angle of $45°$ with the vertical. The side
of the bottom is $200$ feet. Find an expression for the
quantity pouring in or out when the depth of water
varies by $1$ foot; hence find, in gallons, the quantity
withdrawn hourly when the depth is reduced from
$14$ to $10$ feet in $24$ hours.
<p>The volume of a frustum of pyramid of height $H$,
and of bases $A$ and $a$, is $V = \dfrac{H}{3} (A + a + \sqrt{Aa} )$. It is
easily seen that, the slope being $45°$, if the depth be
$h$, the length of the side of the square surface of the
water is $200 + 2h$ feet, so that the volume of water is
\[
\dfrac{h}{3} [200^2 + (200 + 2h)^2 + 200(200 + 2h)]
= 40,000h + 400h^2 + \dfrac{4h^3}{3}.
\]
<p>$\dfrac{dV}{dh} = 40,000 + 800h + 4h^2 = {}$ cubic feet per foot of depth
variation. The mean level from $14$ to $10$ feet is
$12$ feet, when $h = 12$, $\dfrac{dV}{dh} = 50,176$ cubic feet.
<p>Gallons per hour corresponding to a change of depth
of $4$ ft. in $24$ hours ${} = \dfrac{4 × 50,176 × 6.25}{24} = 52,267$ gallons.
<p>(13) The absolute pressure, in atmospheres, $P$, of
saturated steam at the temperature $t°$ C. is given by
Dulong as being $P = \left( \dfrac{40 + t}{140} \right)^5$ as long as $t$ is above
$80°$. Find the rate of variation of the pressure with
the temperature at $100°$ C.
<p>Expand the numerator by the binomial theorem
(see <a href="14.html#binomtheo">here</a>).
\[
P = \frac{1}{140^5} (40^5 + 5×40^4 t + 10 × 40^3 t^2 + 10 × 40^2 t^3
+ 5 × 40t^4 + t^5);
\]
\begin{align*}
\text{hence}\; \dfrac{dP}{dt} = &\dfrac{1}{537,824 × 10^5}\\
&(5 × 40^4 + 20 × 40^3 t + 30 × 40^2 t^2 + 20 × 40t^3 + 5t^4),
\end{align*}
when $t = 100$ this becomes $0.036$ atmosphere per
degree Centigrade change of temperature.
<p>
<hr><h3>Exercises III</h3>
<p>
(1) Differentiate<a name="examples2"/>
<p>(<em>a</em>) $u = 1 + x + \dfrac{x^2}{1 × 2} + \dfrac{x^3}{1 × 2 × 3} + \dotsb$.
<p>(<em>b</em>) $y = ax^2 + bx + c$. (<em>c</em> ) $y = (x + a)^2$.
<p>(<em>d</em>) $y = (x + a)^3$.
<p>(2) If $w = at - \frac{1}{2}bt^2$, find $\dfrac{dw}{dt}$.
<p>(3) Find the differential coefficient of
\[
y = (x + \sqrt{-1}) × (x - \sqrt{-1}).
\]
<p>(4) Differentiate
\[
y = (197x - 34x^2) × (7 + 22x - 83x^3).
\]
<p>(5) If $x = (y + 3) × (y + 5)$, find $\dfrac{dx}{dy}$.
<p>(6) Differentiate $y = 1.3709x × (112.6 + 45.202x^2)$.
<p>Find the differential coefficients of
<p>(7) $y = \dfrac{2x + 3}{3x + 2}$.
<p>(8) $y = \dfrac{1 + x + 2x^2 + 3x^3}{1 + x + 2x^2}$.
<p>(9) $y = \dfrac{ax + b}{cx + d}$.
<p>(10) $y = \dfrac{x^n + a}{x^{-n} + b}$.
<p>(11) The temperature $t$ of the filament of an incandescent
electric lamp is connected to the current
passing through the lamp by the relation
\[
C = a + bt + ct^2.
\]
<p>Find an expression giving the variation of the
current corresponding to a variation of temperature.
<p>(12) The following formulae have been proposed to
express the relation between the electric resistance $R$
of a wire at the temperature $t°$ C., and the resistance
$R_0$ of that same wire at $0°$ Centigrade, $a$, $b$, $c$ being
constants.
\begin{align*}
R &= R_0(1 + at + bt^2). \\
R &= R_0(1 + at + b\sqrt{t}). \\
R &= R_0(1 + at + bt^2)^{-1}.
\end{align*}
<p>Find the rate of variation of the resistance with
regard to temperature as given by each of these
formulae.
<p>(13) The electromotive-force $E$ of a certain type of
standard cell has been found to vary with the temperature $t$
according to the relation
\[
E = 1.4340 \bigl[1 - 0.000814(t-15)
+ 0.000007(t-15)^2\bigr] \text{ volts}.
\]
<p>Find the change of electromotive-force per degree,
at $15°$, $20°$ and $25°$.
<p>(14) The electromotive-force necessary to maintain
an electric arc of length $l$ with a current of intensity $i$
has been found by Mrs. Ayrton to be
\[
E = a + bl + \frac{c + kl}{i},
\]
where $a$, $b$, $c$, $k$ are constants.
<p>Find an expression for the variation of the electromotive-force
(<em>a</em>) with regard to the length of the arc;
(<em>b</em>) with regard to the strength of the current.
<p><h3 class="answers">Answers</h3>
<p>(1) (<em>a</em>) $1 + x + \dfrac{x^2}{2} + \dfrac{x^3}{6} + \dfrac{x^4}{24} + \ldots$
<p>(<em>b</em>) $2ax + b$.
<p>(<em>c</em> ) $2x + 2a$.
<p>(<em>d</em>) $3x^2 + 6ax + 3a^2$.
<p>(2) $\dfrac{dw}{dt} = a - bt$.
<p>(3) $\dfrac{dy}{dx} = 2x$.
<p>(4) $14110x^4 - 65404x^3 - 2244x^2 + 8192x + 1379$.
<p>(5) $\dfrac{dx}{dy} = 2y + 8$.
<p>(6) $185.9022654x^2 + 154.36334$.
<p>(7) $\dfrac{-5}{(3x + 2)^2}$.
<p>(8) $\dfrac{6x^4 + 6x^3 + 9x^2}{(1 + x + 2x^2)^2}$.
<p>(9) $\dfrac{ad - bc}{(cx + d)^2}$.
<p>(10) $\dfrac{anx^{-n-1} + bnx^{n-1} + 2nx^{-1}}{(x^{-n} + b)^2}$.
<p>(11) $b + 2ct$.
<p>(12) $R_0(a + 2bt)$, $R_0 \left(a + \dfrac{b}{2\sqrt{t}}\right)$,
$-\dfrac{R_0(a + 2bt)}{(1 + at + bt^2)^2}$ or $\dfrac{R^2 (a + 2bt)}{R_0}$.
<p>(13) $1.4340(0.000014t - 0.001024)$, $-0.00117$, $-0.00107$, $-0.00097$.
<p>(14) $\dfrac{dE}{dl} = b + \dfrac{k}{i}$, $\dfrac{dE}{di} = -\dfrac{c + kl}{i^2}$.
<p>
<br>
<hr>
<a href="7.html">Next →</a><br>
<a href="/">Main Page ↑</a><br>
<script src="j/jquery.js"></script>
<script src="j/modernizr.js"></script>
<script src="j/dih5.js"></script>
<!-- Google tag (gtag.js) -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-101178221-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-101178221-1');
</script>