-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain.py
138 lines (117 loc) · 6.44 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import argparse
import os
import random
import sys
import numpy as np
import torch
import pprint
from model.utils.config import set_gpu, postprocess_args
sys.path.append(os.getcwd())
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--max_epoch', type=int, default=100)
parser.add_argument('--episodes_per_epoch', type=int, default=600)
parser.add_argument('--num_eval_episodes', type=int, default=600)
parser.add_argument('--model_class', type=str, default='OpenNet', choices=['OpenNet', 'GEL'])
parser.add_argument('--distance', type=str, default='euclidean', choices=['euclidean', 'pixel_sim'])
parser.add_argument('--backbone_class', type=str, default='Res12', choices=['ConvNet', 'Res12', 'Res18', 'WRN'])
parser.add_argument('--dataset', type=str, default='MiniImageNet', choices=['MiniImageNet', 'TieredImageNet',
'CIFAR-FS', 'FC100'])
parser.add_argument('--pretrain', type=bool, default=False)
parser.add_argument('--closed_way', type=int, default=5)
parser.add_argument('--closed_eval_way', type=int, default=5)
parser.add_argument('--open_way', type=int, default=5)
parser.add_argument('--open_eval_way', type=int, default=5)
parser.add_argument('--shot', type=int, default=1)
parser.add_argument('--query', type=int, default=15)
parser.add_argument('--eval_query', type=int, default=15)
parser.add_argument('--temperature', type=float, default=64)
# optimization parameters
parser.add_argument('--lr', type=float, default=0.0002)
parser.add_argument('--lr_mul', type=float, default=10)
parser.add_argument('--lr_scheduler', type=str, default='step', choices=['multistep', 'step', 'cosine'])
parser.add_argument('--step_size', type=str, default='20')
parser.add_argument('--gamma', type=float, default=0.5)
parser.add_argument('--fix_BN', action='store_true', default=False) # do not update the running mean/var in BN
parser.add_argument('--augment', action='store_true', default=False)
parser.add_argument('--multi_gpu', action='store_true', default=False)
parser.add_argument('--gpu', default='1')
parser.add_argument('--init_weights', type=str, default='./initialization/{}-{}.pth')
# usually untouched parameters
parser.add_argument('--mom', type=float, default=0.9)
parser.add_argument('--weight_decay', type=float, default=0.0005) # we find this weight decay value works the best
parser.add_argument('--num_workers', type=int, default=8)
parser.add_argument('--log_interval', type=int, default=300)
parser.add_argument('--eval_interval', type=int, default=1)
parser.add_argument('--save_dir', type=str, default='./checkpoints')
parser.add_argument('--freeze_cls', action='store_true', default=False)
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--data_path', type=str, default=None)
parser.add_argument('--test', action='store_true', default=False)
parser.add_argument('--test_model_path', type=str, default=None)
parser.add_argument('--debug', action='store_true', default=False)
# model parameters
parser.add_argument('--attention', action='store_true', default=False)
parser.add_argument('--open_loss', action='store_false', default=True)
parser.add_argument('--open_loss_scale', default=0.5, type=float)
parser.add_argument('--energy', action='store_true', default=False)
parser.add_argument('--energy_loss', action='store_true', default=False)
parser.add_argument('--m_in', type=float, default=-1,
help='margin for in-distribution; above this value will be penalized')
parser.add_argument('--m_out', type=float, default=1,
help='margin for out-distribution; below this value will be penalized')
parser.add_argument('--energy_method', type=str, default="sum", choices=["sum", "min"])
parser.add_argument('--energy_distance', type=float, default=2.)
# parameters for pixel-wise module
parser.add_argument('--pixel_wise', action='store_true', default=False)
parser.add_argument('--pixel_conv', action='store_true', default=False)
parser.add_argument('--top_method', type=str, default='query', choices=['que0ry', 'proto', 'all'])
parser.add_argument('--top_k', type=int, default=1)
parser.add_argument('--SnaTCHer', action='store_true', default=False)
# parameters for ahead combine
parser.add_argument('--ahead_combine', action='store_true', default=False)
parser.add_argument('--learnable_margin', action='store_true', default=False)
# parameters for new benchmark
parser.add_argument('--new_benchmark', type=str, default=None, choices=[None, 'test', 'all'])
# cross domain
parser.add_argument('--cross', type=str, default=None, choices=['MiniImageNet', 'TieredImageNet', 'CIFAR-FS',
'FC100', 'cub'])
# method
parser.add_argument('--method', type=str, default="GEL", choices=["GEL", "SnaTCHer"])
args = parser.parse_args()
if args.init_weights == './initialization/{}-{}.pth':
args.init_weights = args.init_weights.format(args.dataset, args.shot)
if args.pixel_wise:
args.model_class = "GEL"
if args.pixel_conv:
args.m_in = -1 * args.energy_distance / 2
args.m_out = 1 * args.energy_distance / 2
args.way = args.closed_way + args.open_way
args.eval_way = args.closed_eval_way + args.open_eval_way
args.eval_shot = args.shot
args.num_classes = args.way
args = postprocess_args(args)
args_printer = pprint.PrettyPrinter()
args_printer.pprint(args)
seed = args.seed
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
set_gpu(args.gpu)
if args.method == "GEL":
from model.trainer.fsor_trainer_GEL import FSORTrainerGEL
trainer = FSORTrainerGEL(args)
if not args.test:
trainer.train()
trainer.evaluate_test(path='max_acc.pth')
trainer.evaluate_test(path='max_auroc.pth')
trainer.evaluate_test(path='epoch-last.pth')
elif args.method == "SnaTCHer":
from model.trainer.fsor_trainer_snatcher_f import FSORTrainerSnaTCherF
trainer = FSORTrainerSnaTCherF(args)
trainer.evaluate_test()
else:
raise NotImplementedError
print(args.save_path)