-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhrank.py
executable file
·168 lines (146 loc) · 4.8 KB
/
hrank.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import numpy as np
import pandas as pd
import networkx as nx
from pathlib import Path
from collections import Counter, defaultdict
import rbo
from metapaths import *
def create_graph(metapaths):
G = nx.DiGraph()
keys = list(metapaths[0].keys())
for path in metapaths:
G.add_edge(path[keys[-1]], path[keys[0]])
return G
def rank_count_based(metapaths):
count = Counter()
ranks1 = defaultdict(int)
keys = list(metapaths[0].keys())
for path in metapaths:
count[path[keys[0]]] += 1
for i, (key, val) in enumerate(count.most_common()):
ranks1[key] = i + 1
return ranks1
def construct_ranks(metapaths, dic, ranks_hrank):
keys = list(metapaths[0].keys())
vals = list(dic[keys[0]])
ranks_unsorted = defaultdict(int)
for i in range(len(ranks_hrank)):
ranks_unsorted[vals[i]] = ranks_hrank[i]
ranks_sorted = sorted(ranks_unsorted.items(), key=lambda kv: kv[1], reverse=True)
ranks_final = defaultdict(int)
for i, (key, val) in enumerate(ranks_sorted):
ranks_final[key] = i + 1
return ranks_final
def rb_method_score(ranks1, ranks2):
ranks1_keys = list(ranks1.keys())
ranks2_keys = list(ranks2.keys())
score = rbo.RankingSimilarity(ranks1_keys, ranks2_keys).rbo()
return score
def get_reversed_metapaths(metapaths):
# P_inv = (Al A(l-1) ... A1 | C)
metapaths_rev = []
for dic in metapaths:
metapaths_rev.append(dict(reversed(list(dic.items()))))
return metapaths_rev
def get_transition_probability_matrix(metapaths):
is_path = defaultdict(lambda: defaultdict(int))
dic = defaultdict(set)
for i, path in enumerate(metapaths):
keys, vals = list(path.keys()), list(path.values())
for i in range(len(keys) - 1):
is_path[vals[i]][vals[i + 1]] = 1
dic[keys[i]].add(vals[i])
dic[keys[-1]].add(vals[-1])
dic = {k: sorted(v) for k, v in dic.items()}
# Adjacency Matrix (W)
W = []
keys, vals = list(dic.keys()), list(dic.values())
for i in range(len(keys) - 1):
A1, A2 = keys[i], keys[i + 1]
len1, len2 = len(vals[i]), len(vals[i + 1])
adj = np.zeros((len1, len2))
for j, x1 in enumerate(vals[i]):
for k, x2 in enumerate(vals[i + 1]):
adj[j][k] = is_path[x1][x2]
W.append(adj)
# Transition Probability Matrix (U = W / |W|)
for i, w in enumerate(W):
row_sums = w.sum(axis=1)[:, None]
for j, sum_ in enumerate(row_sums):
if sum_ > 0:
W[i][j] /= sum_
return W, dic
def get_Mp(metapaths, dic, U, constraint):
U_prime = U.copy()
if constraint:
# Constraint Matrix (Mc)
keys = list(dic.keys())
constraint_id = '5b891109a1f4f33b6767f601'
constraint_index = 1
Mc = np.zeros((U[constraint_index].shape[0], U[constraint_index].shape[0]))
idx = dic[keys[constraint_index]].index(constraint_id)
Mc[idx][idx] = 1
# Constrained TPM (U' = Mc * U)
U_prime[constraint_index] = Mc @ U_prime[constraint_index]
# Constrained metapath-based reachable probability matrix (Mp = multiply(U'))
Mp = U_prime[0]
for i in range(1, len(U_prime)):
Mp = Mp @ U_prime[i]
return Mp
def hrank_SY(Mp, alpha, n_iter):
# P = (A1 A2 ... Al | C)
# E = 1 / |A1|
# R(A1 | P) = α * R(A1 |P) * Mp + (1 − α) * E
length = len(Mp)
rank = np.zeros(length) + 1 / length
for i in range(n_iter):
rank = alpha * rank @ Mp + (1 - alpha) / length
return rank
def hrank_AS(Mp, Mp_inv, alpha, n_iter):
# E1 = 1 / |A1|
# E2 = 1 / |A2|
# R_inv(A1 | P_inv) = α * R(A1 |P) * Mp + (1 − α) * E2
# R(A1 | P) = α * R_inv(A1 |P_inv) * Mp_inv + (1 − α) * E1
length1 = len(Mp)
length2 = len(Mp_inv)
rank = np.zeros(length1) + 1 / length1
rank_inv = np.zeros(length2) + 1 / length2
for i in range(n_iter):
rank_inv = alpha * rank @ Mp + (1 - alpha) / length2
rank = alpha * rank_inv @ Mp_inv + (1 - alpha) / length1
return rank, rank_inv
def main():
graph = create_graph(metapaths)
print(f"Nodes: {len(graph.nodes)}")
print(f"Edges: {len(graph.edges)}")
ranks1 = rank_count_based(metapaths)
print("Ranks based on count:")
print(dict(ranks1))
# HRank Symmetric
constraint = False
U, dic = get_transition_probability_matrix(metapaths)
Mp = get_Mp(metapaths, dic, U, constraint)
alpha = 0.85
n_iter = 50
ranks_hrank = hrank_SY(Mp, alpha, n_iter)
ranks2 = construct_ranks(metapaths, dic, ranks_hrank)
print("Ranks based on HRank (SY):")
print(dict(ranks2))
# HRank Asymmetric
metapaths_rev = get_reversed_metapaths(metapaths)
U, dic = get_transition_probability_matrix(metapaths_rev)
Mp_inv = get_Mp(metapaths_rev, dic, U, constraint)
alpha = 0.85
n_iter = 25
ranks_hrank, _ = hrank_AS(Mp, Mp_inv, alpha, n_iter)
ranks3 = construct_ranks(metapaths, dic, ranks_hrank)
print("Ranks based on HRank (AS):")
print(dict(ranks3))
# Save to dataframe
df = pd.DataFrame([ranks3, ranks1], index=["hrank_AS", "count"])
df.to_csv("ranks.csv")
# RB score
score = rb_method_score(ranks1, ranks3)
print(f"RB method score: {score}")
if __name__ == '__main__':
main()